Thermodynamic Stability of a Multicomponent Non-Ideal Plasma

The thermodynamic stability of a multicomponent plasma is studied on the basis of the Ornstein–Zernike integral equations for a multicomponent fluid. A transition is made to the one-component Ornstein–Zernike equation for the most non-ideal subsystem for a plasma with any number of components under...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plasma physics reports 2023, Vol.49 (1), p.49-56
1. Verfasser: Filippov, A. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The thermodynamic stability of a multicomponent plasma is studied on the basis of the Ornstein–Zernike integral equations for a multicomponent fluid. A transition is made to the one-component Ornstein–Zernike equation for the most non-ideal subsystem for a plasma with any number of components under the conditions of applicability of the Debye approximation for direct correlation functions for all plasma components, except for the most non-ideal subsystem. It is shown that all pair correlation functions, charge–charge and number–number structure factors remain positive for all argument values in the entire studied range of the non-ideality parameter of the most non-ideal subsystem. The conditions for the violation of the thermodynamic stability of a three-component dusty plasma are studied for different signs of the charge of dust particles and their different number density.
ISSN:1063-780X
1562-6938
DOI:10.1134/S1063780X22600967