Higher regularity in congested traffic dynamics
In this paper, we consider minimizers of integral functionals of the type F ( u ) : = ∫ Ω [ 1 p ( | D u | - 1 ) + p + f · u ] d x for p > 1 in the vectorial case of mappings u : R n ⊃ Ω → R N with N ≥ 1 . Assuming that f belongs to L n + σ for some σ > 0 , we prove that H ( D u ) is continuous...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2023-04, Vol.385 (3-4), p.1-56 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider minimizers of integral functionals of the type
F
(
u
)
:
=
∫
Ω
[
1
p
(
|
D
u
|
-
1
)
+
p
+
f
·
u
]
d
x
for
p
>
1
in the vectorial case of mappings
u
:
R
n
⊃
Ω
→
R
N
with
N
≥
1
. Assuming that
f
belongs to
L
n
+
σ
for some
σ
>
0
, we prove that
H
(
D
u
)
is continuous in
Ω
for any continuous function
H
:
R
Nn
→
R
Nn
vanishing on
{
ξ
∈
R
Nn
:
|
ξ
|
≤
1
}
. This extends previous results of Santambrogio and Vespri (Nonlinear Anal 73:3832–3841, 2010) when
n
=
2
, and Colombo and Figalli (J Math Pures Appl (9) 101(1):94–117, 2014) for
n
≥
2
, to the vectorial case
N
≥
1
. |
---|---|
ISSN: | 0025-5831 1432-1807 |
DOI: | 10.1007/s00208-022-02375-y |