On Symbol-Pair Distance of a Class of Constacyclic Codes of Length 3ps over Fpm+uFpm
Let p≠3 be any prime. In this paper, we compute symbol-pair distance of all γ-constacyclic codes of length 3ps over the finite commutative chain ring R=Fpm+uFpm, where γ is a unit of R which is not a cube in Fpm. We give the necessary and sufficient condition for a symbol-pair γ-constacyclic code to...
Gespeichert in:
Veröffentlicht in: | Axioms 2023-03, Vol.12 (3), p.254 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let p≠3 be any prime. In this paper, we compute symbol-pair distance of all γ-constacyclic codes of length 3ps over the finite commutative chain ring R=Fpm+uFpm, where γ is a unit of R which is not a cube in Fpm. We give the necessary and sufficient condition for a symbol-pair γ-constacyclic code to be an MDS symbol-pair code. Using that, we provide all MDS symbol-pair γ-constacyclic codes of length 3ps over R. Some examples of the symbol-pair distance of γ-constacyclic codes of length 3ps over R are provided. |
---|---|
ISSN: | 2075-1680 2075-1680 |
DOI: | 10.3390/axioms12030254 |