Modeling Minimum Cost Network Flows With Port-Hamiltonian Systems
We give a short overview of advantages and drawbacks of the classical formulation of minimum cost network flow problems and solution techniques, to motivate a reformulation of classical static minimum cost network flow problems as optimal control problems constrained by port-Hamiltonian systems (pHS...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-03 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give a short overview of advantages and drawbacks of the classical formulation of minimum cost network flow problems and solution techniques, to motivate a reformulation of classical static minimum cost network flow problems as optimal control problems constrained by port-Hamiltonian systems (pHS). The first-order optimality system for the port-Hamiltonian system-constrained optimal control problem is formally derived. Then we propose a gradient-based algorithm to find optimal controls. The port-Hamiltonian system formulation naturally conserves flow and supports a wide array of further modeling options as, for example, node reservoirs, flow dependent costs, leaking pipes (dissipation) and coupled sub-networks (ports). They thus provide a versatile alternative to state-of-the art approaches towards dynamic network flow problems, which are often based on computationally costly time-expanded networks. We argue that this opens the door for a plethora of modeling options and solution approaches for network flow problems. |
---|---|
ISSN: | 2331-8422 |