Real-Time Topology Estimation for Active Distribution System Using Graph-Bank Tracking Bayesian Networks

Real-time topology estimation in distribution grid with high penetration of distributed energy resources remains a challenging task due to the insufficient high-precision measurements and frequent topology variations. This article proposes a real-time distribution system topology estimation approach...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2023-04, Vol.19 (4), p.6127-6137
Hauptverfasser: Liu, Youbo, Ren, Pengzhe, Zhao, Junbo, Liu, Tingjian, Wang, Zeqi, Tang, Zao, Liu, Junyong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Real-time topology estimation in distribution grid with high penetration of distributed energy resources remains a challenging task due to the insufficient high-precision measurements and frequent topology variations. This article proposes a real-time distribution system topology estimation approach building on the graph theory and Bayesian networks with sparse measurements. The graph theory develops the topology graph bank to effectively leverage the prior knowledge of topology models, including the topology structure and the switching relationship between different topologies. This allows the development of the Bayesian networks for topology tracking using real-time voltage and power injection measurements. A novel discrete method considering the similarity of data correlation information is proposed for the optimal placement of μ PMUs to ensure the performance of topology estimation. Numerical results on the IEEE 33-node and 123-node systems show that the BN-based topology estimation model has better performance against incomplete information, i.e., missing data, than other alternatives.
ISSN:1551-3203
1941-0050
DOI:10.1109/TII.2022.3197311