On n-Jordan derivations in the sense of Herstein

We prove that every n -Jordan derivation in the sense of Herstein (Bull Am Math Soc 67:517–531, 1961, p. 528) on n !-torsion free unital commutative rings is a derivation. Furthermore, we prove that every continuous n -Jordan derivation on semiprime normed algebras is a derivation. The results of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Físicas y Naturales. Serie A, Matemáticas, 2023-04, Vol.117 (2), Article 85
Hauptverfasser: Rostami, Mehdi, Alinejad, Ahmad, Khodaei, Hamid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas
container_volume 117
creator Rostami, Mehdi
Alinejad, Ahmad
Khodaei, Hamid
description We prove that every n -Jordan derivation in the sense of Herstein (Bull Am Math Soc 67:517–531, 1961, p. 528) on n !-torsion free unital commutative rings is a derivation. Furthermore, we prove that every continuous n -Jordan derivation on semiprime normed algebras is a derivation. The results of this paper improve and generalize the main results of Bridges and Bergen (Proc Am Math Soc 90:25–29, 1984), but under weaker assumptions. Some applications and examples of our results are also provided.
doi_str_mv 10.1007/s13398-023-01419-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2790075379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2790075379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f4767bf31006e58447b205de37822cc767760bce05d2f08507ecc8b9cd3f9f083</originalsourceid><addsrcrecordid>eNp9UMFOwzAMjRBITGM_wCkS54CTNE1yRBOwoUm7wDlqUwc6QTqSDom_J6xI3PDFlv3es_0IueRwzQH0TeZSWsNASAa84papEzLjSlvGFajTY22YliDPySLnHZSQvDKgZwS2kUb2OKSuibTD1H82Yz_ETPtIx1ekGWNGOgS6wpRH7OMFOQvNW8bFb56T5_u7p-WKbbYP6-XthnnJ7chCpWvdBlkOrFGZqtKtANWh1EYI78tQ19B6LD0RwCjQ6L1pre9ksKUh5-Rq0t2n4eOAeXS74ZBiWemEtuVtJbUtKDGhfBpyThjcPvXvTfpyHNyPOW4yxxVz3NEcpwpJTqRcwPEF05_0P6xvzFNktw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2790075379</pqid></control><display><type>article</type><title>On n-Jordan derivations in the sense of Herstein</title><source>Springer Online Journals Complete</source><creator>Rostami, Mehdi ; Alinejad, Ahmad ; Khodaei, Hamid</creator><creatorcontrib>Rostami, Mehdi ; Alinejad, Ahmad ; Khodaei, Hamid</creatorcontrib><description>We prove that every n -Jordan derivation in the sense of Herstein (Bull Am Math Soc 67:517–531, 1961, p. 528) on n !-torsion free unital commutative rings is a derivation. Furthermore, we prove that every continuous n -Jordan derivation on semiprime normed algebras is a derivation. The results of this paper improve and generalize the main results of Bridges and Bergen (Proc Am Math Soc 90:25–29, 1984), but under weaker assumptions. Some applications and examples of our results are also provided.</description><identifier>ISSN: 1578-7303</identifier><identifier>EISSN: 1579-1505</identifier><identifier>DOI: 10.1007/s13398-023-01419-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Derivation ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Original Paper ; Rings (mathematics) ; Theoretical</subject><ispartof>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas, 2023-04, Vol.117 (2), Article 85</ispartof><rights>The Author(s) under exclusive licence to The Royal Academy of Sciences, Madrid 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f4767bf31006e58447b205de37822cc767760bce05d2f08507ecc8b9cd3f9f083</citedby><cites>FETCH-LOGICAL-c319t-f4767bf31006e58447b205de37822cc767760bce05d2f08507ecc8b9cd3f9f083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13398-023-01419-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13398-023-01419-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Rostami, Mehdi</creatorcontrib><creatorcontrib>Alinejad, Ahmad</creatorcontrib><creatorcontrib>Khodaei, Hamid</creatorcontrib><title>On n-Jordan derivations in the sense of Herstein</title><title>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</title><addtitle>Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat</addtitle><description>We prove that every n -Jordan derivation in the sense of Herstein (Bull Am Math Soc 67:517–531, 1961, p. 528) on n !-torsion free unital commutative rings is a derivation. Furthermore, we prove that every continuous n -Jordan derivation on semiprime normed algebras is a derivation. The results of this paper improve and generalize the main results of Bridges and Bergen (Proc Am Math Soc 90:25–29, 1984), but under weaker assumptions. Some applications and examples of our results are also provided.</description><subject>Applications of Mathematics</subject><subject>Derivation</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Rings (mathematics)</subject><subject>Theoretical</subject><issn>1578-7303</issn><issn>1579-1505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UMFOwzAMjRBITGM_wCkS54CTNE1yRBOwoUm7wDlqUwc6QTqSDom_J6xI3PDFlv3es_0IueRwzQH0TeZSWsNASAa84papEzLjSlvGFajTY22YliDPySLnHZSQvDKgZwS2kUb2OKSuibTD1H82Yz_ETPtIx1ekGWNGOgS6wpRH7OMFOQvNW8bFb56T5_u7p-WKbbYP6-XthnnJ7chCpWvdBlkOrFGZqtKtANWh1EYI78tQ19B6LD0RwCjQ6L1pre9ksKUh5-Rq0t2n4eOAeXS74ZBiWemEtuVtJbUtKDGhfBpyThjcPvXvTfpyHNyPOW4yxxVz3NEcpwpJTqRcwPEF05_0P6xvzFNktw</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Rostami, Mehdi</creator><creator>Alinejad, Ahmad</creator><creator>Khodaei, Hamid</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20230401</creationdate><title>On n-Jordan derivations in the sense of Herstein</title><author>Rostami, Mehdi ; Alinejad, Ahmad ; Khodaei, Hamid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f4767bf31006e58447b205de37822cc767760bce05d2f08507ecc8b9cd3f9f083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications of Mathematics</topic><topic>Derivation</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Rings (mathematics)</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rostami, Mehdi</creatorcontrib><creatorcontrib>Alinejad, Ahmad</creatorcontrib><creatorcontrib>Khodaei, Hamid</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rostami, Mehdi</au><au>Alinejad, Ahmad</au><au>Khodaei, Hamid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On n-Jordan derivations in the sense of Herstein</atitle><jtitle>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</jtitle><stitle>Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>117</volume><issue>2</issue><artnum>85</artnum><issn>1578-7303</issn><eissn>1579-1505</eissn><abstract>We prove that every n -Jordan derivation in the sense of Herstein (Bull Am Math Soc 67:517–531, 1961, p. 528) on n !-torsion free unital commutative rings is a derivation. Furthermore, we prove that every continuous n -Jordan derivation on semiprime normed algebras is a derivation. The results of this paper improve and generalize the main results of Bridges and Bergen (Proc Am Math Soc 90:25–29, 1984), but under weaker assumptions. Some applications and examples of our results are also provided.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s13398-023-01419-5</doi></addata></record>
fulltext fulltext
identifier ISSN: 1578-7303
ispartof Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas, 2023-04, Vol.117 (2), Article 85
issn 1578-7303
1579-1505
language eng
recordid cdi_proquest_journals_2790075379
source Springer Online Journals Complete
subjects Applications of Mathematics
Derivation
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Original Paper
Rings (mathematics)
Theoretical
title On n-Jordan derivations in the sense of Herstein
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T05%3A45%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20n-Jordan%20derivations%20in%20the%20sense%20of%20Herstein&rft.jtitle=Revista%20de%20la%20Real%20Academia%20de%20Ciencias%20Exactas,%20F%C3%ADsicas%20y%20Naturales.%20Serie%20A,%20Matem%C3%A1ticas&rft.au=Rostami,%20Mehdi&rft.date=2023-04-01&rft.volume=117&rft.issue=2&rft.artnum=85&rft.issn=1578-7303&rft.eissn=1579-1505&rft_id=info:doi/10.1007/s13398-023-01419-5&rft_dat=%3Cproquest_cross%3E2790075379%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2790075379&rft_id=info:pmid/&rfr_iscdi=true