On n-Jordan derivations in the sense of Herstein
We prove that every n -Jordan derivation in the sense of Herstein (Bull Am Math Soc 67:517–531, 1961, p. 528) on n !-torsion free unital commutative rings is a derivation. Furthermore, we prove that every continuous n -Jordan derivation on semiprime normed algebras is a derivation. The results of th...
Gespeichert in:
Veröffentlicht in: | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Físicas y Naturales. Serie A, Matemáticas, 2023-04, Vol.117 (2), Article 85 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that every
n
-Jordan derivation in the sense of Herstein (Bull Am Math Soc 67:517–531, 1961, p. 528) on
n
!-torsion free unital commutative rings is a derivation. Furthermore, we prove that every continuous
n
-Jordan derivation on semiprime normed algebras is a derivation. The results of this paper improve and generalize the main results of Bridges and Bergen (Proc Am Math Soc 90:25–29, 1984), but under weaker assumptions. Some applications and examples of our results are also provided. |
---|---|
ISSN: | 1578-7303 1579-1505 |
DOI: | 10.1007/s13398-023-01419-5 |