Heterogeneous Degradation Modeling Based on Hierarchical Bayesian Model and Wiener Process

In this paper, a hierarchical Bayesian model is presented with heterogeneous degradation data populations based on Wiener process and Gaussian mixture model, where the actual degradation path is described by Wiener process, and the Gaussian mixture model is used to capture the heterogeneity between...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Iranian journal of science (Online) 2023-04, Vol.47 (2), p.457-466
Hauptverfasser: Hao, Huibing, Ji, Zhenglong, Li, Chunping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a hierarchical Bayesian model is presented with heterogeneous degradation data populations based on Wiener process and Gaussian mixture model, where the actual degradation path is described by Wiener process, and the Gaussian mixture model is used to capture the heterogeneity between data populations. The Bayesian parameters estimation method is carried out via hierarchical priors and Gibbs sampling algorithm, and DIC and WAIC are the two selection criteria for the optimal model to fit the data. A set of GaAs laser numerical example indicates that the heterogeneous degradation data population with two sub-populations provides a better reliability assessment result than assuming a homogeneous population.
ISSN:2731-8095
1028-6276
2731-8109
2364-1819
DOI:10.1007/s40995-023-01439-1