On inequalities involving counts of the prime factors of an odd perfect number
Let \(N\) be an odd perfect number. Let \(\omega(N)\) be the number of distinct prime factors of \(N\) and let \(\Omega(N)\) be the total number (counting multiplicity) of prime factors of \(N\). We prove that \(\frac{99}{37}\omega(N) - \frac{187}{37} \leq \Omega(N)\) and that if \(3\nmid N\), then...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-03 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Clayton, Graeme Hansen, Cody S |
description | Let \(N\) be an odd perfect number. Let \(\omega(N)\) be the number of distinct prime factors of \(N\) and let \(\Omega(N)\) be the total number (counting multiplicity) of prime factors of \(N\). We prove that \(\frac{99}{37}\omega(N) - \frac{187}{37} \leq \Omega(N)\) and that if \(3\nmid N\), then \(\frac{51}{19}\omega(N)-\frac{46}{19} \leq \Omega(N)\). |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2789557289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2789557289</sourcerecordid><originalsourceid>FETCH-proquest_journals_27895572893</originalsourceid><addsrcrecordid>eNqNis0KgkAURocgSMp3uNBasDtN6jqKVrVpH5PeqRGd0fnx-ZPoAVp9nHO-BUuQ811W7hFXLPW-zfMcDwUKwRN2vRnQhsYoOx00-Rkm203avKC20QQPVkF4EwxO9wRK1sG6r5QGbNPAQE5RHcDE_kluw5ZKdp7S367Z9ny6Hy_Z4OwYyYdHa6Mzc3pgUVZCFFhW_L_XB_jDPoM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2789557289</pqid></control><display><type>article</type><title>On inequalities involving counts of the prime factors of an odd perfect number</title><source>Free E- Journals</source><creator>Clayton, Graeme ; Hansen, Cody S</creator><creatorcontrib>Clayton, Graeme ; Hansen, Cody S</creatorcontrib><description>Let \(N\) be an odd perfect number. Let \(\omega(N)\) be the number of distinct prime factors of \(N\) and let \(\Omega(N)\) be the total number (counting multiplicity) of prime factors of \(N\). We prove that \(\frac{99}{37}\omega(N) - \frac{187}{37} \leq \Omega(N)\) and that if \(3\nmid N\), then \(\frac{51}{19}\omega(N)-\frac{46}{19} \leq \Omega(N)\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><ispartof>arXiv.org, 2023-03</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Clayton, Graeme</creatorcontrib><creatorcontrib>Hansen, Cody S</creatorcontrib><title>On inequalities involving counts of the prime factors of an odd perfect number</title><title>arXiv.org</title><description>Let \(N\) be an odd perfect number. Let \(\omega(N)\) be the number of distinct prime factors of \(N\) and let \(\Omega(N)\) be the total number (counting multiplicity) of prime factors of \(N\). We prove that \(\frac{99}{37}\omega(N) - \frac{187}{37} \leq \Omega(N)\) and that if \(3\nmid N\), then \(\frac{51}{19}\omega(N)-\frac{46}{19} \leq \Omega(N)\).</description><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNis0KgkAURocgSMp3uNBasDtN6jqKVrVpH5PeqRGd0fnx-ZPoAVp9nHO-BUuQ811W7hFXLPW-zfMcDwUKwRN2vRnQhsYoOx00-Rkm203avKC20QQPVkF4EwxO9wRK1sG6r5QGbNPAQE5RHcDE_kluw5ZKdp7S367Z9ny6Hy_Z4OwYyYdHa6Mzc3pgUVZCFFhW_L_XB_jDPoM</recordid><startdate>20230321</startdate><enddate>20230321</enddate><creator>Clayton, Graeme</creator><creator>Hansen, Cody S</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230321</creationdate><title>On inequalities involving counts of the prime factors of an odd perfect number</title><author>Clayton, Graeme ; Hansen, Cody S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27895572893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Clayton, Graeme</creatorcontrib><creatorcontrib>Hansen, Cody S</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Clayton, Graeme</au><au>Hansen, Cody S</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On inequalities involving counts of the prime factors of an odd perfect number</atitle><jtitle>arXiv.org</jtitle><date>2023-03-21</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Let \(N\) be an odd perfect number. Let \(\omega(N)\) be the number of distinct prime factors of \(N\) and let \(\Omega(N)\) be the total number (counting multiplicity) of prime factors of \(N\). We prove that \(\frac{99}{37}\omega(N) - \frac{187}{37} \leq \Omega(N)\) and that if \(3\nmid N\), then \(\frac{51}{19}\omega(N)-\frac{46}{19} \leq \Omega(N)\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2789557289 |
source | Free E- Journals |
title | On inequalities involving counts of the prime factors of an odd perfect number |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A42%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20inequalities%20involving%20counts%20of%20the%20prime%20factors%20of%20an%20odd%20perfect%20number&rft.jtitle=arXiv.org&rft.au=Clayton,%20Graeme&rft.date=2023-03-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2789557289%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2789557289&rft_id=info:pmid/&rfr_iscdi=true |