On inequalities involving counts of the prime factors of an odd perfect number

Let \(N\) be an odd perfect number. Let \(\omega(N)\) be the number of distinct prime factors of \(N\) and let \(\Omega(N)\) be the total number (counting multiplicity) of prime factors of \(N\). We prove that \(\frac{99}{37}\omega(N) - \frac{187}{37} \leq \Omega(N)\) and that if \(3\nmid N\), then...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-03
Hauptverfasser: Clayton, Graeme, Hansen, Cody S
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let \(N\) be an odd perfect number. Let \(\omega(N)\) be the number of distinct prime factors of \(N\) and let \(\Omega(N)\) be the total number (counting multiplicity) of prime factors of \(N\). We prove that \(\frac{99}{37}\omega(N) - \frac{187}{37} \leq \Omega(N)\) and that if \(3\nmid N\), then \(\frac{51}{19}\omega(N)-\frac{46}{19} \leq \Omega(N)\).
ISSN:2331-8422