On inequalities involving counts of the prime factors of an odd perfect number
Let \(N\) be an odd perfect number. Let \(\omega(N)\) be the number of distinct prime factors of \(N\) and let \(\Omega(N)\) be the total number (counting multiplicity) of prime factors of \(N\). We prove that \(\frac{99}{37}\omega(N) - \frac{187}{37} \leq \Omega(N)\) and that if \(3\nmid N\), then...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-03 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \(N\) be an odd perfect number. Let \(\omega(N)\) be the number of distinct prime factors of \(N\) and let \(\Omega(N)\) be the total number (counting multiplicity) of prime factors of \(N\). We prove that \(\frac{99}{37}\omega(N) - \frac{187}{37} \leq \Omega(N)\) and that if \(3\nmid N\), then \(\frac{51}{19}\omega(N)-\frac{46}{19} \leq \Omega(N)\). |
---|---|
ISSN: | 2331-8422 |