MODEL THEORY OF MEASURE SPACES AND PROBABILITY LOGIC

We study the model-theoretic aspects of a probability logic suited for talking about measure spaces. This nonclassical logic has a model theory rather different from that of classical predicate logic. In general, not every satisfiable set of sentences has a countable model, but we show that one can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The review of symbolic logic 2013-09, Vol.6 (3), p.367-393
Hauptverfasser: KUYPER, RUTGER, TERWIJN, SEBASTIAAN A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 393
container_issue 3
container_start_page 367
container_title The review of symbolic logic
container_volume 6
creator KUYPER, RUTGER
TERWIJN, SEBASTIAAN A.
description We study the model-theoretic aspects of a probability logic suited for talking about measure spaces. This nonclassical logic has a model theory rather different from that of classical predicate logic. In general, not every satisfiable set of sentences has a countable model, but we show that one can always build a model on the unit interval. Also, the probability logic under consideration is not compact. However, using ultraproducts we can prove a compactness theorem for a certain class of weak models.
doi_str_mv 10.1017/S1755020313000063
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2789370765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1755020313000063</cupid><sourcerecordid>2789370765</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-cc38490c5ef48274a9f9ae964a047b63413c35b2d85a0e03458fd399839903ab3</originalsourceid><addsrcrecordid>eNp1UMFOwkAQ3RhNRPQDvG3iuTq7s9vdPZZShKRYQuHAqdmWrYGI4BYO_r1FiB6Mk0zmZea9N8kj5J7BIwOmnnKmpAQOyBDaCvGCdI6rADhjlz8Y8JrcNM26ZXCOukPEOOsnKZ0Nk2y6oNmAjpMon08Tmk-iOMlp9NKnk2nWi3qjdDRb0DR7HsW35Kq2b427O88umQ-SWTwMvq9RGlQYwj6oKtTCQCVdLTRXwpraWGdCYUGoMkTBsEJZ8qWWFhygkLpeojG6bUBbYpc8nHx3fvtxcM2-WG8P_r19WXClDSpQoWxZ7MSq_LZpvKuLnV9trP8sGBTHcIo_4bQaPGvspvSr5av7tf5f9QVP1F5K</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2789370765</pqid></control><display><type>article</type><title>MODEL THEORY OF MEASURE SPACES AND PROBABILITY LOGIC</title><source>Cambridge University Press Journals Complete</source><creator>KUYPER, RUTGER ; TERWIJN, SEBASTIAAN A.</creator><creatorcontrib>KUYPER, RUTGER ; TERWIJN, SEBASTIAAN A.</creatorcontrib><description>We study the model-theoretic aspects of a probability logic suited for talking about measure spaces. This nonclassical logic has a model theory rather different from that of classical predicate logic. In general, not every satisfiable set of sentences has a countable model, but we show that one can always build a model on the unit interval. Also, the probability logic under consideration is not compact. However, using ultraproducts we can prove a compactness theorem for a certain class of weak models.</description><identifier>ISSN: 1755-0203</identifier><identifier>EISSN: 1755-0211</identifier><identifier>DOI: 10.1017/S1755020313000063</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Predicate logic</subject><ispartof>The review of symbolic logic, 2013-09, Vol.6 (3), p.367-393</ispartof><rights>Copyright © Association for Symbolic Logic 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-cc38490c5ef48274a9f9ae964a047b63413c35b2d85a0e03458fd399839903ab3</citedby><cites>FETCH-LOGICAL-c360t-cc38490c5ef48274a9f9ae964a047b63413c35b2d85a0e03458fd399839903ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1755020313000063/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>KUYPER, RUTGER</creatorcontrib><creatorcontrib>TERWIJN, SEBASTIAAN A.</creatorcontrib><title>MODEL THEORY OF MEASURE SPACES AND PROBABILITY LOGIC</title><title>The review of symbolic logic</title><addtitle>The Review of Symbolic Logic</addtitle><description>We study the model-theoretic aspects of a probability logic suited for talking about measure spaces. This nonclassical logic has a model theory rather different from that of classical predicate logic. In general, not every satisfiable set of sentences has a countable model, but we show that one can always build a model on the unit interval. Also, the probability logic under consideration is not compact. However, using ultraproducts we can prove a compactness theorem for a certain class of weak models.</description><subject>Predicate logic</subject><issn>1755-0203</issn><issn>1755-0211</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UMFOwkAQ3RhNRPQDvG3iuTq7s9vdPZZShKRYQuHAqdmWrYGI4BYO_r1FiB6Mk0zmZea9N8kj5J7BIwOmnnKmpAQOyBDaCvGCdI6rADhjlz8Y8JrcNM26ZXCOukPEOOsnKZ0Nk2y6oNmAjpMon08Tmk-iOMlp9NKnk2nWi3qjdDRb0DR7HsW35Kq2b427O88umQ-SWTwMvq9RGlQYwj6oKtTCQCVdLTRXwpraWGdCYUGoMkTBsEJZ8qWWFhygkLpeojG6bUBbYpc8nHx3fvtxcM2-WG8P_r19WXClDSpQoWxZ7MSq_LZpvKuLnV9trP8sGBTHcIo_4bQaPGvspvSr5av7tf5f9QVP1F5K</recordid><startdate>201309</startdate><enddate>201309</enddate><creator>KUYPER, RUTGER</creator><creator>TERWIJN, SEBASTIAAN A.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>201309</creationdate><title>MODEL THEORY OF MEASURE SPACES AND PROBABILITY LOGIC</title><author>KUYPER, RUTGER ; TERWIJN, SEBASTIAAN A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-cc38490c5ef48274a9f9ae964a047b63413c35b2d85a0e03458fd399839903ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Predicate logic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KUYPER, RUTGER</creatorcontrib><creatorcontrib>TERWIJN, SEBASTIAAN A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>The review of symbolic logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KUYPER, RUTGER</au><au>TERWIJN, SEBASTIAAN A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MODEL THEORY OF MEASURE SPACES AND PROBABILITY LOGIC</atitle><jtitle>The review of symbolic logic</jtitle><addtitle>The Review of Symbolic Logic</addtitle><date>2013-09</date><risdate>2013</risdate><volume>6</volume><issue>3</issue><spage>367</spage><epage>393</epage><pages>367-393</pages><issn>1755-0203</issn><eissn>1755-0211</eissn><abstract>We study the model-theoretic aspects of a probability logic suited for talking about measure spaces. This nonclassical logic has a model theory rather different from that of classical predicate logic. In general, not every satisfiable set of sentences has a countable model, but we show that one can always build a model on the unit interval. Also, the probability logic under consideration is not compact. However, using ultraproducts we can prove a compactness theorem for a certain class of weak models.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/S1755020313000063</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-0203
ispartof The review of symbolic logic, 2013-09, Vol.6 (3), p.367-393
issn 1755-0203
1755-0211
language eng
recordid cdi_proquest_journals_2789370765
source Cambridge University Press Journals Complete
subjects Predicate logic
title MODEL THEORY OF MEASURE SPACES AND PROBABILITY LOGIC
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T07%3A49%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MODEL%20THEORY%20OF%20MEASURE%20SPACES%20AND%20PROBABILITY%20LOGIC&rft.jtitle=The%20review%20of%20symbolic%20logic&rft.au=KUYPER,%20RUTGER&rft.date=2013-09&rft.volume=6&rft.issue=3&rft.spage=367&rft.epage=393&rft.pages=367-393&rft.issn=1755-0203&rft.eissn=1755-0211&rft_id=info:doi/10.1017/S1755020313000063&rft_dat=%3Cproquest_cross%3E2789370765%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2789370765&rft_id=info:pmid/&rft_cupid=10_1017_S1755020313000063&rfr_iscdi=true