MODEL THEORY OF MEASURE SPACES AND PROBABILITY LOGIC

We study the model-theoretic aspects of a probability logic suited for talking about measure spaces. This nonclassical logic has a model theory rather different from that of classical predicate logic. In general, not every satisfiable set of sentences has a countable model, but we show that one can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The review of symbolic logic 2013-09, Vol.6 (3), p.367-393
Hauptverfasser: KUYPER, RUTGER, TERWIJN, SEBASTIAAN A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the model-theoretic aspects of a probability logic suited for talking about measure spaces. This nonclassical logic has a model theory rather different from that of classical predicate logic. In general, not every satisfiable set of sentences has a countable model, but we show that one can always build a model on the unit interval. Also, the probability logic under consideration is not compact. However, using ultraproducts we can prove a compactness theorem for a certain class of weak models.
ISSN:1755-0203
1755-0211
DOI:10.1017/S1755020313000063