Triplet generation at the CdTe quantum dot/anthracene interface mediated by hot and thermalized electron exchange for enhanced production of singlet oxygen

Triplet energy transfer (TET) from semiconductor quantum dots (QDs) to molecular triplets has potential applications in photon up-conversion and singlet oxygen generation. Here, we have constructed a complex consisting of CdTe QDs as the donor and 9-anthracenecarboxylic acid (ACA) as the triplet acc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2023-03, Vol.25 (12), p.8913-892
Hauptverfasser: Chi, Zhen, Xu, Jia, Luo, Shida, Ran, Xia, Wang, Xiaojuan, Liu, Pingan, He, Yulu, Kuang, Yanmin, Guo, Lijun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Triplet energy transfer (TET) from semiconductor quantum dots (QDs) to molecular triplets has potential applications in photon up-conversion and singlet oxygen generation. Here, we have constructed a complex consisting of CdTe QDs as the donor and 9-anthracenecarboxylic acid (ACA) as the triplet acceptor, and studied the TET pathways and enhanced singlet oxygen generation properties. The results from steady-state and time-resolved spectroscopy demonstrate efficient TET with a total efficiency of over 80% from photoexcited CdTe QDs to ACA. Dynamical analysis clearly indicates two distinctive TET channels - hot electron exchange and thermalized electron exchange - mediating the TET process in the CdTe QDs-ACA complex. The TET efficiencies from hot electron exchange at high energetic levels and thermalized electron exchange on the lowest exciton state can reach ∼27% and ∼85%, respectively, following 530 nm excitation. This efficient TET endows the CdTe QDs-ACA complex with a good capability of generating singlet oxygen species with a yield of up to ∼59%. These findings contribute further insights to the mechanisms of interfacial TET processes and are significant in designing efficient TET systems based on semiconductor nanoparticles and triplet molecules. Two triplet energy transfer pathways, including hot and thermalized electron exchange, in CdTe QDs-anthracene with efficiencies of ∼27% and ∼85% are revealed. The complexes demonstrate the efficient generation of singlet oxygen with a yield of ∼59%.
ISSN:1463-9076
1463-9084
DOI:10.1039/d3cp00021d