Infrared spectroscopy combined with machine learning techniques to monitor starch in vitro digestibility

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Nutrition Society 2023, Vol.82 (OCE2), Article E196
Hauptverfasser: Visnupriyan, R., Harper, K., Flanagan, B., Cozzolino, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue OCE2
container_start_page
container_title Proceedings of the Nutrition Society
container_volume 82
creator Visnupriyan, R.
Harper, K.
Flanagan, B.
Cozzolino, D.
description
doi_str_mv 10.1017/S0029665123002057
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2789191876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0029665123002057</cupid><sourcerecordid>2789191876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1577-3a3160efec1ba6393d6e945b8f60f3c69ff31bd093efabd12bc4666c488418fc3</originalsourceid><addsrcrecordid>eNp1UMtLwzAYD6LgnP4B3gKeq_maNmmOMnwMBA_quSRpsmasaU0yZf-9GRt4EE_f4_f4HghdA7kFAvzujZBSMFZDSXNGan6CZlDxuig5iFM028PFHj9HFzGuCQFWNWyG-qW3QQbT4TgZncIY9TjtsB4H5XzufrvU40HqPld4Y2Twzq9wMrr37nNrIk4jHkbv0hhwTDLoHjuPv1x2wp1bmZicchuXdpfozMpNNFfHOEcfjw_vi-fi5fVpubh_KTTUnBdUUmDEWKNBSUYF7ZgRVa0ay4ilmglrKaiOCGqsVB2USleMMV01TQWN1XSObg6-Uxj3C6Z2PW6DzyPbkjcCBDScZRYcWDpfHIOx7RTcIMOuBdLuH9r-eWjW0KNGDiq4bmV-rf9X_QDhVnna</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2789191876</pqid></control><display><type>article</type><title>Infrared spectroscopy combined with machine learning techniques to monitor starch in vitro digestibility</title><source>Cambridge University Press Journals Complete</source><creator>Visnupriyan, R. ; Harper, K. ; Flanagan, B. ; Cozzolino, D.</creator><creatorcontrib>Visnupriyan, R. ; Harper, K. ; Flanagan, B. ; Cozzolino, D.</creatorcontrib><identifier>ISSN: 0029-6651</identifier><identifier>EISSN: 1475-2719</identifier><identifier>DOI: 10.1017/S0029665123002057</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Digestibility ; Infrared spectroscopy ; Machine learning ; Spectrum analysis ; Trends</subject><ispartof>Proceedings of the Nutrition Society, 2023, Vol.82 (OCE2), Article E196</ispartof><rights>Copyright © The Authors 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0029665123002057/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,4024,27923,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Visnupriyan, R.</creatorcontrib><creatorcontrib>Harper, K.</creatorcontrib><creatorcontrib>Flanagan, B.</creatorcontrib><creatorcontrib>Cozzolino, D.</creatorcontrib><title>Infrared spectroscopy combined with machine learning techniques to monitor starch in vitro digestibility</title><title>Proceedings of the Nutrition Society</title><addtitle>Proc. Nutr. Soc</addtitle><subject>Digestibility</subject><subject>Infrared spectroscopy</subject><subject>Machine learning</subject><subject>Spectrum analysis</subject><subject>Trends</subject><issn>0029-6651</issn><issn>1475-2719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1UMtLwzAYD6LgnP4B3gKeq_maNmmOMnwMBA_quSRpsmasaU0yZf-9GRt4EE_f4_f4HghdA7kFAvzujZBSMFZDSXNGan6CZlDxuig5iFM028PFHj9HFzGuCQFWNWyG-qW3QQbT4TgZncIY9TjtsB4H5XzufrvU40HqPld4Y2Twzq9wMrr37nNrIk4jHkbv0hhwTDLoHjuPv1x2wp1bmZicchuXdpfozMpNNFfHOEcfjw_vi-fi5fVpubh_KTTUnBdUUmDEWKNBSUYF7ZgRVa0ay4ilmglrKaiOCGqsVB2USleMMV01TQWN1XSObg6-Uxj3C6Z2PW6DzyPbkjcCBDScZRYcWDpfHIOx7RTcIMOuBdLuH9r-eWjW0KNGDiq4bmV-rf9X_QDhVnna</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Visnupriyan, R.</creator><creator>Harper, K.</creator><creator>Flanagan, B.</creator><creator>Cozzolino, D.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7T5</scope><scope>7TK</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope></search><sort><creationdate>2023</creationdate><title>Infrared spectroscopy combined with machine learning techniques to monitor starch in vitro digestibility</title><author>Visnupriyan, R. ; Harper, K. ; Flanagan, B. ; Cozzolino, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1577-3a3160efec1ba6393d6e945b8f60f3c69ff31bd093efabd12bc4666c488418fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Digestibility</topic><topic>Infrared spectroscopy</topic><topic>Machine learning</topic><topic>Spectrum analysis</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Visnupriyan, R.</creatorcontrib><creatorcontrib>Harper, K.</creatorcontrib><creatorcontrib>Flanagan, B.</creatorcontrib><creatorcontrib>Cozzolino, D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><jtitle>Proceedings of the Nutrition Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Visnupriyan, R.</au><au>Harper, K.</au><au>Flanagan, B.</au><au>Cozzolino, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Infrared spectroscopy combined with machine learning techniques to monitor starch in vitro digestibility</atitle><jtitle>Proceedings of the Nutrition Society</jtitle><addtitle>Proc. Nutr. Soc</addtitle><date>2023</date><risdate>2023</risdate><volume>82</volume><issue>OCE2</issue><artnum>E196</artnum><issn>0029-6651</issn><eissn>1475-2719</eissn><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0029665123002057</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-6651
ispartof Proceedings of the Nutrition Society, 2023, Vol.82 (OCE2), Article E196
issn 0029-6651
1475-2719
language eng
recordid cdi_proquest_journals_2789191876
source Cambridge University Press Journals Complete
subjects Digestibility
Infrared spectroscopy
Machine learning
Spectrum analysis
Trends
title Infrared spectroscopy combined with machine learning techniques to monitor starch in vitro digestibility
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A55%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Infrared%20spectroscopy%20combined%20with%20machine%20learning%20techniques%20to%20monitor%20starch%20in%20vitro%20digestibility&rft.jtitle=Proceedings%20of%20the%20Nutrition%20Society&rft.au=Visnupriyan,%20R.&rft.date=2023&rft.volume=82&rft.issue=OCE2&rft.artnum=E196&rft.issn=0029-6651&rft.eissn=1475-2719&rft_id=info:doi/10.1017/S0029665123002057&rft_dat=%3Cproquest_cross%3E2789191876%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2789191876&rft_id=info:pmid/&rft_cupid=10_1017_S0029665123002057&rfr_iscdi=true