On an exponential power sum
Using combinatorial techniques, we derive a recurrence identity that expresses an exponential power sum with negative powers in terms of another exponential power sum with positive powers. Consequently, we derive a formula for the power sum of the first \(k\) natural numbers when the power is odd, w...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-11 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using combinatorial techniques, we derive a recurrence identity that expresses an exponential power sum with negative powers in terms of another exponential power sum with positive powers. Consequently, we derive a formula for the power sum of the first \(k\) natural numbers when the power is odd, which when used in combination with Faulhaber's formula for computing power sums helps us to retrieve the Bernoulli numbers in certain cases. |
---|---|
ISSN: | 2331-8422 |