LIMITS OF FRACTIONAL DERIVATIVES AND COMPOSITIONS OF ANALYTIC FUNCTIONS

Suppose that the function $f$ is analytic in the open unit disk $\unicode[STIX]{x1D6E5}$ in the complex plane. For each $\unicode[STIX]{x1D6FC}>0$ a function $f^{[\unicode[STIX]{x1D6FC}]}$ is defined as the Hadamard product of $f$ with a certain power function. The function $f^{[\unicode[STIX]{x1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Australian Mathematical Society (2001) 2017-08, Vol.103 (1), p.104-115
Hauptverfasser: MACGREGOR, THOMAS H., STERNER, MICHAEL P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Suppose that the function $f$ is analytic in the open unit disk $\unicode[STIX]{x1D6E5}$ in the complex plane. For each $\unicode[STIX]{x1D6FC}>0$ a function $f^{[\unicode[STIX]{x1D6FC}]}$ is defined as the Hadamard product of $f$ with a certain power function. The function $f^{[\unicode[STIX]{x1D6FC}]}$ compares with the fractional derivative of $f$ of order $\unicode[STIX]{x1D6FC}$ . Suppose that $f^{[\unicode[STIX]{x1D6FC}]}$ has a limit at some point $z_{0}$ on the boundary of $\unicode[STIX]{x1D6E5}$ . Then $w_{0}=\lim _{z\rightarrow z_{0}}f(z)$ exists. Suppose that $\unicode[STIX]{x1D6F7}$ is analytic in $f(\unicode[STIX]{x1D6E5})$ and at $w_{0}$ . We show that if $g=\unicode[STIX]{x1D6F7}(f)$ then $g^{[\unicode[STIX]{x1D6FC}]}$ has a limit at $z_{0}$ .
ISSN:1446-7887
1446-8107
DOI:10.1017/S1446788716000409