LIMITS OF FRACTIONAL DERIVATIVES AND COMPOSITIONS OF ANALYTIC FUNCTIONS
Suppose that the function $f$ is analytic in the open unit disk $\unicode[STIX]{x1D6E5}$ in the complex plane. For each $\unicode[STIX]{x1D6FC}>0$ a function $f^{[\unicode[STIX]{x1D6FC}]}$ is defined as the Hadamard product of $f$ with a certain power function. The function $f^{[\unicode[STIX]{x1...
Gespeichert in:
Veröffentlicht in: | Journal of the Australian Mathematical Society (2001) 2017-08, Vol.103 (1), p.104-115 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Suppose that the function
$f$
is analytic in the open unit disk
$\unicode[STIX]{x1D6E5}$
in the complex plane. For each
$\unicode[STIX]{x1D6FC}>0$
a function
$f^{[\unicode[STIX]{x1D6FC}]}$
is defined as the Hadamard product of
$f$
with a certain power function. The function
$f^{[\unicode[STIX]{x1D6FC}]}$
compares with the fractional derivative of
$f$
of order
$\unicode[STIX]{x1D6FC}$
. Suppose that
$f^{[\unicode[STIX]{x1D6FC}]}$
has a limit at some point
$z_{0}$
on the boundary of
$\unicode[STIX]{x1D6E5}$
. Then
$w_{0}=\lim _{z\rightarrow z_{0}}f(z)$
exists. Suppose that
$\unicode[STIX]{x1D6F7}$
is analytic in
$f(\unicode[STIX]{x1D6E5})$
and at
$w_{0}$
. We show that if
$g=\unicode[STIX]{x1D6F7}(f)$
then
$g^{[\unicode[STIX]{x1D6FC}]}$
has a limit at
$z_{0}$
. |
---|---|
ISSN: | 1446-7887 1446-8107 |
DOI: | 10.1017/S1446788716000409 |