ON POINTS WITH POSITIVE DENSITY OF THE DIGIT SEQUENCE IN INFINITE ITERATED FUNCTION SYSTEMS

Let $\{f_{n}\}_{n\geq 1}$ be an infinite iterated function system on $[0,1]$ and let $\unicode[STIX]{x1D6EC}$ be its attractor. Then, for any $x\in \unicode[STIX]{x1D6EC}$ , it corresponds to a sequence of integers $\{a_{n}(x)\}_{n\geq 1}$ , called the digit sequence of $x$ , in the sense that $$\be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Australian Mathematical Society (2001) 2017-06, Vol.102 (3), p.435-443
Hauptverfasser: ZHANG, ZHEN-LIANG, CAO, CHUN-YUN
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $\{f_{n}\}_{n\geq 1}$ be an infinite iterated function system on $[0,1]$ and let $\unicode[STIX]{x1D6EC}$ be its attractor. Then, for any $x\in \unicode[STIX]{x1D6EC}$ , it corresponds to a sequence of integers $\{a_{n}(x)\}_{n\geq 1}$ , called the digit sequence of $x$ , in the sense that $$\begin{eqnarray}x=\lim _{n\rightarrow \infty }f_{a_{1}(x)}\circ \cdots \circ f_{a_{n}(x)}(1).\end{eqnarray}$$ In this note, we investigate the size of the points whose digit sequences are strictly increasing and of upper Banach density one, which improves the work of Tong and Wang and Zhang and Cao.
ISSN:1446-7887
1446-8107
DOI:10.1017/S1446788716000288