The Tangential k-Cauchy–Fueter Operator on Right-Type Groups and Its Bochner–Martinelli Type Formula
The k -Cauchy–Fueter operator and the tangential k -Cauchy–Fueter operator are the quaternionic counterpart of Cauchy–Riemann operator and the tangential Cauchy–Riemann operator in the theory of several complex variables, respectively. In Wang (On the boundary complex of the k -Cauchy–Fueter complex...
Gespeichert in:
Veröffentlicht in: | Advances in applied Clifford algebras 2023-04, Vol.33 (2), Article 22 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The
k
-Cauchy–Fueter operator and the tangential
k
-Cauchy–Fueter operator are the quaternionic counterpart of Cauchy–Riemann operator and the tangential Cauchy–Riemann operator in the theory of several complex variables, respectively. In Wang (On the boundary complex of the
k
-Cauchy–Fueter complex,
arXiv:2210.13656
), Wang introduced the notion of right-type groups, which have the structure of nilpotent Lie groups of step-two, and many aspects of quaternionic analysis can be generalized to this kind of group. In this paper we generalize the right-type group to any step-two case, and introduce the generalization of Cauchy–Fueter operator on
H
n
×
R
r
.
Then we establish the Bochner–Martinelli type formula for tangential
k
-Cauchy–Fueter operator on stratified right-type groups. |
---|---|
ISSN: | 0188-7009 1661-4909 |
DOI: | 10.1007/s00006-023-01267-x |