The Tangential k-Cauchy–Fueter Operator on Right-Type Groups and Its Bochner–Martinelli Type Formula

The k -Cauchy–Fueter operator and the tangential k -Cauchy–Fueter operator are the quaternionic counterpart of Cauchy–Riemann operator and the tangential Cauchy–Riemann operator in the theory of several complex variables, respectively. In Wang (On the boundary complex of the k -Cauchy–Fueter complex...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied Clifford algebras 2023-04, Vol.33 (2), Article 22
Hauptverfasser: Shi, Yun, Ren, Guangzhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The k -Cauchy–Fueter operator and the tangential k -Cauchy–Fueter operator are the quaternionic counterpart of Cauchy–Riemann operator and the tangential Cauchy–Riemann operator in the theory of several complex variables, respectively. In Wang (On the boundary complex of the k -Cauchy–Fueter complex, arXiv:2210.13656 ), Wang introduced the notion of right-type groups, which have the structure of nilpotent Lie groups of step-two, and many aspects of quaternionic analysis can be generalized to this kind of group. In this paper we generalize the right-type group to any step-two case, and introduce the generalization of Cauchy–Fueter operator on H n × R r . Then we establish the Bochner–Martinelli type formula for tangential k -Cauchy–Fueter operator on stratified right-type groups.
ISSN:0188-7009
1661-4909
DOI:10.1007/s00006-023-01267-x