Advanced chromatographic technique for performance simulation of anti-Alzheimer agent: an ensemble machine learning approach
This work employs the application of three artificial intelligence (AI) techniques namely; support vector machine (SVM), Hammerstein-Wiener (HW) and multi-layer perceptron (MLP) for predicting the qualitative properties of an anti-Alzheimer agent using high-pressure liquid chromatography technique....
Gespeichert in:
Veröffentlicht in: | SN applied sciences 2020-11, Vol.2 (11), p.1871, Article 1871 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work employs the application of three artificial intelligence (AI) techniques namely; support vector machine (SVM), Hammerstein-Wiener (HW) and multi-layer perceptron (MLP) for predicting the qualitative properties of an anti-Alzheimer agent using high-pressure liquid chromatography technique. The mobile phase (inform of acetonitrile and trifluoroacetic acid) and the column temperature was used as the predictors in modelling the maximum retention time (tR-max) and resolution (Resol.) as the output variables of the analyte. The measured and predicted values were checked using three performance indices including; Nash–Sutcliffe efficiency (NSE), correlation coefficient (CC) as the goodness of fits and a statistical error inform of root-mean-square error (RMSE). The results obtained demonstrated the promising ability of AI-based models in modelling the qualitative properties of the anti-Alzheimer agent. Observation of different outputs of the AI-based models at various time intervals showed the necessity of ensembling the outputs of the AI-based models. Therefore, simple average ensemble and support vector machine ensemble (SVM-E) were employed to enhance the performance skills of the simple models. The comparative performance of SVM-E inform of NSE indicated its ability in boosting and enhancing the performance skills of the single models SVM, MLP and HW models up to 5, 13 and 20% respectively in the testing stage for modelling tR-max. |
---|---|
ISSN: | 2523-3963 2523-3971 |
DOI: | 10.1007/s42452-020-03690-2 |