Novel criteria for the optimum design of grooved microchannels based on cell shear protection and docking regulation: a lattice Boltzmann method study
Grooved channel bioreactors have shown great applications in cell biology studies by creating a controlled cellular microenvironment and protecting it from destructive influences of fluidic shear stress. Despite numerous studies on improvement in cell docking and retention in microchannels, the lack...
Gespeichert in:
Veröffentlicht in: | SN applied sciences 2020-11, Vol.2 (11), p.1823, Article 1823 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 1823 |
container_title | SN applied sciences |
container_volume | 2 |
creator | Ramazani Sarbandi, Iman Taslimi, Melika Sadat Bazargan, Vahid |
description | Grooved channel bioreactors have shown great applications in cell biology studies by creating a controlled cellular microenvironment and protecting it from destructive influences of fluidic shear stress. Despite numerous studies on improvement in cell docking and retention in microchannels, the lack of reliable criteria for determining optimal groove geometries seems to be a great barrier in the field. In this study, a systematic approach was used to find the critical geometrical parameters that yield to the highest cell shear protection against the upstream flow. To achieve this goal, the lattice Boltzmann method was used to simulate the flow inside a grooved microchannel due to its incredible reliability for portraying complex streamlines in microflow phenomenon. The simulation results showed that the flow behavior within microgrooves considerably varies with groove/channel geometry and that based on the generated microcirculation regions, there are correlations between groove/channel width, depth and the maximum shear protection factor, which led toward finding reliable criteria for optimization of such parameters. The results could be beneficial for researchers to design such devices based on different cell sizes, cell behavior and geometrical constraints while ensuring protected cell culture environment. |
doi_str_mv | 10.1007/s42452-020-03630-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2788449134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2788449134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-88f862ab1ccdef52bf39d12bac2e76032511990b5cd12cee661a9b578975d5aa3</originalsourceid><addsrcrecordid>eNp9UctOxDAMjBBIrBZ-gJMlzoU8-uQGiJe0ggucqzRx20DbLEmKBB_C95JlEdy4jK3ReGxrCDli9IRRWpz6lKcZTyinCRW5iLhDFjzjIhFVwXZ_-1zsk0PvnymlvKhEWooF-by3bziAciagMxJa6yD0CHYdzDiPoNGbbgLbQudslGoYjXJW9XKacPDQSB85O4HCYQDfo3SwdjagCiayctKgrXoxUwcOu3mQG_oMJMQuGIVwYYfwMUY3GDH0VoMPs34_IHutHDwe_tQlebq-ery8TVYPN3eX56tExUdDUpZtmXPZMKU0thlvWlFpxhupOBY5FTxjrKpok6nIKsQ8Z7JqsqKsikxnUoolOd76xptfZ_Shfrazm-LKmhdlmaYVE2lU8a0qfu69w7ZeOzNK914zWm8iqLcR1DGC-juCiEsitkM-iqcO3Z_1P1NflBWMXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2788449134</pqid></control><display><type>article</type><title>Novel criteria for the optimum design of grooved microchannels based on cell shear protection and docking regulation: a lattice Boltzmann method study</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ramazani Sarbandi, Iman ; Taslimi, Melika Sadat ; Bazargan, Vahid</creator><creatorcontrib>Ramazani Sarbandi, Iman ; Taslimi, Melika Sadat ; Bazargan, Vahid</creatorcontrib><description>Grooved channel bioreactors have shown great applications in cell biology studies by creating a controlled cellular microenvironment and protecting it from destructive influences of fluidic shear stress. Despite numerous studies on improvement in cell docking and retention in microchannels, the lack of reliable criteria for determining optimal groove geometries seems to be a great barrier in the field. In this study, a systematic approach was used to find the critical geometrical parameters that yield to the highest cell shear protection against the upstream flow. To achieve this goal, the lattice Boltzmann method was used to simulate the flow inside a grooved microchannel due to its incredible reliability for portraying complex streamlines in microflow phenomenon. The simulation results showed that the flow behavior within microgrooves considerably varies with groove/channel geometry and that based on the generated microcirculation regions, there are correlations between groove/channel width, depth and the maximum shear protection factor, which led toward finding reliable criteria for optimization of such parameters. The results could be beneficial for researchers to design such devices based on different cell sizes, cell behavior and geometrical constraints while ensuring protected cell culture environment.</description><identifier>ISSN: 2523-3963</identifier><identifier>EISSN: 2523-3971</identifier><identifier>DOI: 10.1007/s42452-020-03630-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>6. Interdisciplinary (general) ; Applied and Technical Physics ; Bioreactors ; Boundary conditions ; Cell culture ; Cells ; Chemistry/Food Science ; Criteria ; Docking ; Earth Sciences ; Engineering ; Environment ; Flow simulation ; Grooves ; Materials Science ; Methods ; Microchannels ; Microenvironments ; Optimization ; Parameters ; Research Article ; Shear stress ; Simulation ; Velocity ; Viscosity</subject><ispartof>SN applied sciences, 2020-11, Vol.2 (11), p.1823, Article 1823</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>Springer Nature Switzerland AG 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-88f862ab1ccdef52bf39d12bac2e76032511990b5cd12cee661a9b578975d5aa3</citedby><cites>FETCH-LOGICAL-c363t-88f862ab1ccdef52bf39d12bac2e76032511990b5cd12cee661a9b578975d5aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ramazani Sarbandi, Iman</creatorcontrib><creatorcontrib>Taslimi, Melika Sadat</creatorcontrib><creatorcontrib>Bazargan, Vahid</creatorcontrib><title>Novel criteria for the optimum design of grooved microchannels based on cell shear protection and docking regulation: a lattice Boltzmann method study</title><title>SN applied sciences</title><addtitle>SN Appl. Sci</addtitle><description>Grooved channel bioreactors have shown great applications in cell biology studies by creating a controlled cellular microenvironment and protecting it from destructive influences of fluidic shear stress. Despite numerous studies on improvement in cell docking and retention in microchannels, the lack of reliable criteria for determining optimal groove geometries seems to be a great barrier in the field. In this study, a systematic approach was used to find the critical geometrical parameters that yield to the highest cell shear protection against the upstream flow. To achieve this goal, the lattice Boltzmann method was used to simulate the flow inside a grooved microchannel due to its incredible reliability for portraying complex streamlines in microflow phenomenon. The simulation results showed that the flow behavior within microgrooves considerably varies with groove/channel geometry and that based on the generated microcirculation regions, there are correlations between groove/channel width, depth and the maximum shear protection factor, which led toward finding reliable criteria for optimization of such parameters. The results could be beneficial for researchers to design such devices based on different cell sizes, cell behavior and geometrical constraints while ensuring protected cell culture environment.</description><subject>6. Interdisciplinary (general)</subject><subject>Applied and Technical Physics</subject><subject>Bioreactors</subject><subject>Boundary conditions</subject><subject>Cell culture</subject><subject>Cells</subject><subject>Chemistry/Food Science</subject><subject>Criteria</subject><subject>Docking</subject><subject>Earth Sciences</subject><subject>Engineering</subject><subject>Environment</subject><subject>Flow simulation</subject><subject>Grooves</subject><subject>Materials Science</subject><subject>Methods</subject><subject>Microchannels</subject><subject>Microenvironments</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Research Article</subject><subject>Shear stress</subject><subject>Simulation</subject><subject>Velocity</subject><subject>Viscosity</subject><issn>2523-3963</issn><issn>2523-3971</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UctOxDAMjBBIrBZ-gJMlzoU8-uQGiJe0ggucqzRx20DbLEmKBB_C95JlEdy4jK3ReGxrCDli9IRRWpz6lKcZTyinCRW5iLhDFjzjIhFVwXZ_-1zsk0PvnymlvKhEWooF-by3bziAciagMxJa6yD0CHYdzDiPoNGbbgLbQudslGoYjXJW9XKacPDQSB85O4HCYQDfo3SwdjagCiayctKgrXoxUwcOu3mQG_oMJMQuGIVwYYfwMUY3GDH0VoMPs34_IHutHDwe_tQlebq-ery8TVYPN3eX56tExUdDUpZtmXPZMKU0thlvWlFpxhupOBY5FTxjrKpok6nIKsQ8Z7JqsqKsikxnUoolOd76xptfZ_Shfrazm-LKmhdlmaYVE2lU8a0qfu69w7ZeOzNK914zWm8iqLcR1DGC-juCiEsitkM-iqcO3Z_1P1NflBWMXg</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Ramazani Sarbandi, Iman</creator><creator>Taslimi, Melika Sadat</creator><creator>Bazargan, Vahid</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201101</creationdate><title>Novel criteria for the optimum design of grooved microchannels based on cell shear protection and docking regulation: a lattice Boltzmann method study</title><author>Ramazani Sarbandi, Iman ; Taslimi, Melika Sadat ; Bazargan, Vahid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-88f862ab1ccdef52bf39d12bac2e76032511990b5cd12cee661a9b578975d5aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>6. Interdisciplinary (general)</topic><topic>Applied and Technical Physics</topic><topic>Bioreactors</topic><topic>Boundary conditions</topic><topic>Cell culture</topic><topic>Cells</topic><topic>Chemistry/Food Science</topic><topic>Criteria</topic><topic>Docking</topic><topic>Earth Sciences</topic><topic>Engineering</topic><topic>Environment</topic><topic>Flow simulation</topic><topic>Grooves</topic><topic>Materials Science</topic><topic>Methods</topic><topic>Microchannels</topic><topic>Microenvironments</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Research Article</topic><topic>Shear stress</topic><topic>Simulation</topic><topic>Velocity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramazani Sarbandi, Iman</creatorcontrib><creatorcontrib>Taslimi, Melika Sadat</creatorcontrib><creatorcontrib>Bazargan, Vahid</creatorcontrib><collection>CrossRef</collection><jtitle>SN applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramazani Sarbandi, Iman</au><au>Taslimi, Melika Sadat</au><au>Bazargan, Vahid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel criteria for the optimum design of grooved microchannels based on cell shear protection and docking regulation: a lattice Boltzmann method study</atitle><jtitle>SN applied sciences</jtitle><stitle>SN Appl. Sci</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>2</volume><issue>11</issue><spage>1823</spage><pages>1823-</pages><artnum>1823</artnum><issn>2523-3963</issn><eissn>2523-3971</eissn><abstract>Grooved channel bioreactors have shown great applications in cell biology studies by creating a controlled cellular microenvironment and protecting it from destructive influences of fluidic shear stress. Despite numerous studies on improvement in cell docking and retention in microchannels, the lack of reliable criteria for determining optimal groove geometries seems to be a great barrier in the field. In this study, a systematic approach was used to find the critical geometrical parameters that yield to the highest cell shear protection against the upstream flow. To achieve this goal, the lattice Boltzmann method was used to simulate the flow inside a grooved microchannel due to its incredible reliability for portraying complex streamlines in microflow phenomenon. The simulation results showed that the flow behavior within microgrooves considerably varies with groove/channel geometry and that based on the generated microcirculation regions, there are correlations between groove/channel width, depth and the maximum shear protection factor, which led toward finding reliable criteria for optimization of such parameters. The results could be beneficial for researchers to design such devices based on different cell sizes, cell behavior and geometrical constraints while ensuring protected cell culture environment.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s42452-020-03630-0</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2523-3963 |
ispartof | SN applied sciences, 2020-11, Vol.2 (11), p.1823, Article 1823 |
issn | 2523-3963 2523-3971 |
language | eng |
recordid | cdi_proquest_journals_2788449134 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | 6. Interdisciplinary (general) Applied and Technical Physics Bioreactors Boundary conditions Cell culture Cells Chemistry/Food Science Criteria Docking Earth Sciences Engineering Environment Flow simulation Grooves Materials Science Methods Microchannels Microenvironments Optimization Parameters Research Article Shear stress Simulation Velocity Viscosity |
title | Novel criteria for the optimum design of grooved microchannels based on cell shear protection and docking regulation: a lattice Boltzmann method study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T09%3A47%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20criteria%20for%20the%20optimum%20design%20of%20grooved%20microchannels%20based%20on%20cell%20shear%20protection%20and%20docking%20regulation:%20a%20lattice%20Boltzmann%20method%20study&rft.jtitle=SN%20applied%20sciences&rft.au=Ramazani%20Sarbandi,%20Iman&rft.date=2020-11-01&rft.volume=2&rft.issue=11&rft.spage=1823&rft.pages=1823-&rft.artnum=1823&rft.issn=2523-3963&rft.eissn=2523-3971&rft_id=info:doi/10.1007/s42452-020-03630-0&rft_dat=%3Cproquest_cross%3E2788449134%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2788449134&rft_id=info:pmid/&rfr_iscdi=true |