Novel criteria for the optimum design of grooved microchannels based on cell shear protection and docking regulation: a lattice Boltzmann method study

Grooved channel bioreactors have shown great applications in cell biology studies by creating a controlled cellular microenvironment and protecting it from destructive influences of fluidic shear stress. Despite numerous studies on improvement in cell docking and retention in microchannels, the lack...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SN applied sciences 2020-11, Vol.2 (11), p.1823, Article 1823
Hauptverfasser: Ramazani Sarbandi, Iman, Taslimi, Melika Sadat, Bazargan, Vahid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 1823
container_title SN applied sciences
container_volume 2
creator Ramazani Sarbandi, Iman
Taslimi, Melika Sadat
Bazargan, Vahid
description Grooved channel bioreactors have shown great applications in cell biology studies by creating a controlled cellular microenvironment and protecting it from destructive influences of fluidic shear stress. Despite numerous studies on improvement in cell docking and retention in microchannels, the lack of reliable criteria for determining optimal groove geometries seems to be a great barrier in the field. In this study, a systematic approach was used to find the critical geometrical parameters that yield to the highest cell shear protection against the upstream flow. To achieve this goal, the lattice Boltzmann method was used to simulate the flow inside a grooved microchannel due to its incredible reliability for portraying complex streamlines in microflow phenomenon. The simulation results showed that the flow behavior within microgrooves considerably varies with groove/channel geometry and that based on the generated microcirculation regions, there are correlations between groove/channel width, depth and the maximum shear protection factor, which led toward finding reliable criteria for optimization of such parameters. The results could be beneficial for researchers to design such devices based on different cell sizes, cell behavior and geometrical constraints while ensuring protected cell culture environment.
doi_str_mv 10.1007/s42452-020-03630-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2788449134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2788449134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-88f862ab1ccdef52bf39d12bac2e76032511990b5cd12cee661a9b578975d5aa3</originalsourceid><addsrcrecordid>eNp9UctOxDAMjBBIrBZ-gJMlzoU8-uQGiJe0ggucqzRx20DbLEmKBB_C95JlEdy4jK3ReGxrCDli9IRRWpz6lKcZTyinCRW5iLhDFjzjIhFVwXZ_-1zsk0PvnymlvKhEWooF-by3bziAciagMxJa6yD0CHYdzDiPoNGbbgLbQudslGoYjXJW9XKacPDQSB85O4HCYQDfo3SwdjagCiayctKgrXoxUwcOu3mQG_oMJMQuGIVwYYfwMUY3GDH0VoMPs34_IHutHDwe_tQlebq-ery8TVYPN3eX56tExUdDUpZtmXPZMKU0thlvWlFpxhupOBY5FTxjrKpok6nIKsQ8Z7JqsqKsikxnUoolOd76xptfZ_Shfrazm-LKmhdlmaYVE2lU8a0qfu69w7ZeOzNK914zWm8iqLcR1DGC-juCiEsitkM-iqcO3Z_1P1NflBWMXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2788449134</pqid></control><display><type>article</type><title>Novel criteria for the optimum design of grooved microchannels based on cell shear protection and docking regulation: a lattice Boltzmann method study</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ramazani Sarbandi, Iman ; Taslimi, Melika Sadat ; Bazargan, Vahid</creator><creatorcontrib>Ramazani Sarbandi, Iman ; Taslimi, Melika Sadat ; Bazargan, Vahid</creatorcontrib><description>Grooved channel bioreactors have shown great applications in cell biology studies by creating a controlled cellular microenvironment and protecting it from destructive influences of fluidic shear stress. Despite numerous studies on improvement in cell docking and retention in microchannels, the lack of reliable criteria for determining optimal groove geometries seems to be a great barrier in the field. In this study, a systematic approach was used to find the critical geometrical parameters that yield to the highest cell shear protection against the upstream flow. To achieve this goal, the lattice Boltzmann method was used to simulate the flow inside a grooved microchannel due to its incredible reliability for portraying complex streamlines in microflow phenomenon. The simulation results showed that the flow behavior within microgrooves considerably varies with groove/channel geometry and that based on the generated microcirculation regions, there are correlations between groove/channel width, depth and the maximum shear protection factor, which led toward finding reliable criteria for optimization of such parameters. The results could be beneficial for researchers to design such devices based on different cell sizes, cell behavior and geometrical constraints while ensuring protected cell culture environment.</description><identifier>ISSN: 2523-3963</identifier><identifier>EISSN: 2523-3971</identifier><identifier>DOI: 10.1007/s42452-020-03630-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>6. Interdisciplinary (general) ; Applied and Technical Physics ; Bioreactors ; Boundary conditions ; Cell culture ; Cells ; Chemistry/Food Science ; Criteria ; Docking ; Earth Sciences ; Engineering ; Environment ; Flow simulation ; Grooves ; Materials Science ; Methods ; Microchannels ; Microenvironments ; Optimization ; Parameters ; Research Article ; Shear stress ; Simulation ; Velocity ; Viscosity</subject><ispartof>SN applied sciences, 2020-11, Vol.2 (11), p.1823, Article 1823</ispartof><rights>Springer Nature Switzerland AG 2020</rights><rights>Springer Nature Switzerland AG 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-88f862ab1ccdef52bf39d12bac2e76032511990b5cd12cee661a9b578975d5aa3</citedby><cites>FETCH-LOGICAL-c363t-88f862ab1ccdef52bf39d12bac2e76032511990b5cd12cee661a9b578975d5aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ramazani Sarbandi, Iman</creatorcontrib><creatorcontrib>Taslimi, Melika Sadat</creatorcontrib><creatorcontrib>Bazargan, Vahid</creatorcontrib><title>Novel criteria for the optimum design of grooved microchannels based on cell shear protection and docking regulation: a lattice Boltzmann method study</title><title>SN applied sciences</title><addtitle>SN Appl. Sci</addtitle><description>Grooved channel bioreactors have shown great applications in cell biology studies by creating a controlled cellular microenvironment and protecting it from destructive influences of fluidic shear stress. Despite numerous studies on improvement in cell docking and retention in microchannels, the lack of reliable criteria for determining optimal groove geometries seems to be a great barrier in the field. In this study, a systematic approach was used to find the critical geometrical parameters that yield to the highest cell shear protection against the upstream flow. To achieve this goal, the lattice Boltzmann method was used to simulate the flow inside a grooved microchannel due to its incredible reliability for portraying complex streamlines in microflow phenomenon. The simulation results showed that the flow behavior within microgrooves considerably varies with groove/channel geometry and that based on the generated microcirculation regions, there are correlations between groove/channel width, depth and the maximum shear protection factor, which led toward finding reliable criteria for optimization of such parameters. The results could be beneficial for researchers to design such devices based on different cell sizes, cell behavior and geometrical constraints while ensuring protected cell culture environment.</description><subject>6. Interdisciplinary (general)</subject><subject>Applied and Technical Physics</subject><subject>Bioreactors</subject><subject>Boundary conditions</subject><subject>Cell culture</subject><subject>Cells</subject><subject>Chemistry/Food Science</subject><subject>Criteria</subject><subject>Docking</subject><subject>Earth Sciences</subject><subject>Engineering</subject><subject>Environment</subject><subject>Flow simulation</subject><subject>Grooves</subject><subject>Materials Science</subject><subject>Methods</subject><subject>Microchannels</subject><subject>Microenvironments</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Research Article</subject><subject>Shear stress</subject><subject>Simulation</subject><subject>Velocity</subject><subject>Viscosity</subject><issn>2523-3963</issn><issn>2523-3971</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UctOxDAMjBBIrBZ-gJMlzoU8-uQGiJe0ggucqzRx20DbLEmKBB_C95JlEdy4jK3ReGxrCDli9IRRWpz6lKcZTyinCRW5iLhDFjzjIhFVwXZ_-1zsk0PvnymlvKhEWooF-by3bziAciagMxJa6yD0CHYdzDiPoNGbbgLbQudslGoYjXJW9XKacPDQSB85O4HCYQDfo3SwdjagCiayctKgrXoxUwcOu3mQG_oMJMQuGIVwYYfwMUY3GDH0VoMPs34_IHutHDwe_tQlebq-ery8TVYPN3eX56tExUdDUpZtmXPZMKU0thlvWlFpxhupOBY5FTxjrKpok6nIKsQ8Z7JqsqKsikxnUoolOd76xptfZ_Shfrazm-LKmhdlmaYVE2lU8a0qfu69w7ZeOzNK914zWm8iqLcR1DGC-juCiEsitkM-iqcO3Z_1P1NflBWMXg</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Ramazani Sarbandi, Iman</creator><creator>Taslimi, Melika Sadat</creator><creator>Bazargan, Vahid</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20201101</creationdate><title>Novel criteria for the optimum design of grooved microchannels based on cell shear protection and docking regulation: a lattice Boltzmann method study</title><author>Ramazani Sarbandi, Iman ; Taslimi, Melika Sadat ; Bazargan, Vahid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-88f862ab1ccdef52bf39d12bac2e76032511990b5cd12cee661a9b578975d5aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>6. Interdisciplinary (general)</topic><topic>Applied and Technical Physics</topic><topic>Bioreactors</topic><topic>Boundary conditions</topic><topic>Cell culture</topic><topic>Cells</topic><topic>Chemistry/Food Science</topic><topic>Criteria</topic><topic>Docking</topic><topic>Earth Sciences</topic><topic>Engineering</topic><topic>Environment</topic><topic>Flow simulation</topic><topic>Grooves</topic><topic>Materials Science</topic><topic>Methods</topic><topic>Microchannels</topic><topic>Microenvironments</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Research Article</topic><topic>Shear stress</topic><topic>Simulation</topic><topic>Velocity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramazani Sarbandi, Iman</creatorcontrib><creatorcontrib>Taslimi, Melika Sadat</creatorcontrib><creatorcontrib>Bazargan, Vahid</creatorcontrib><collection>CrossRef</collection><jtitle>SN applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramazani Sarbandi, Iman</au><au>Taslimi, Melika Sadat</au><au>Bazargan, Vahid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel criteria for the optimum design of grooved microchannels based on cell shear protection and docking regulation: a lattice Boltzmann method study</atitle><jtitle>SN applied sciences</jtitle><stitle>SN Appl. Sci</stitle><date>2020-11-01</date><risdate>2020</risdate><volume>2</volume><issue>11</issue><spage>1823</spage><pages>1823-</pages><artnum>1823</artnum><issn>2523-3963</issn><eissn>2523-3971</eissn><abstract>Grooved channel bioreactors have shown great applications in cell biology studies by creating a controlled cellular microenvironment and protecting it from destructive influences of fluidic shear stress. Despite numerous studies on improvement in cell docking and retention in microchannels, the lack of reliable criteria for determining optimal groove geometries seems to be a great barrier in the field. In this study, a systematic approach was used to find the critical geometrical parameters that yield to the highest cell shear protection against the upstream flow. To achieve this goal, the lattice Boltzmann method was used to simulate the flow inside a grooved microchannel due to its incredible reliability for portraying complex streamlines in microflow phenomenon. The simulation results showed that the flow behavior within microgrooves considerably varies with groove/channel geometry and that based on the generated microcirculation regions, there are correlations between groove/channel width, depth and the maximum shear protection factor, which led toward finding reliable criteria for optimization of such parameters. The results could be beneficial for researchers to design such devices based on different cell sizes, cell behavior and geometrical constraints while ensuring protected cell culture environment.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s42452-020-03630-0</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2523-3963
ispartof SN applied sciences, 2020-11, Vol.2 (11), p.1823, Article 1823
issn 2523-3963
2523-3971
language eng
recordid cdi_proquest_journals_2788449134
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects 6. Interdisciplinary (general)
Applied and Technical Physics
Bioreactors
Boundary conditions
Cell culture
Cells
Chemistry/Food Science
Criteria
Docking
Earth Sciences
Engineering
Environment
Flow simulation
Grooves
Materials Science
Methods
Microchannels
Microenvironments
Optimization
Parameters
Research Article
Shear stress
Simulation
Velocity
Viscosity
title Novel criteria for the optimum design of grooved microchannels based on cell shear protection and docking regulation: a lattice Boltzmann method study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T09%3A47%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20criteria%20for%20the%20optimum%20design%20of%20grooved%20microchannels%20based%20on%20cell%20shear%20protection%20and%20docking%20regulation:%20a%20lattice%20Boltzmann%20method%20study&rft.jtitle=SN%20applied%20sciences&rft.au=Ramazani%20Sarbandi,%20Iman&rft.date=2020-11-01&rft.volume=2&rft.issue=11&rft.spage=1823&rft.pages=1823-&rft.artnum=1823&rft.issn=2523-3963&rft.eissn=2523-3971&rft_id=info:doi/10.1007/s42452-020-03630-0&rft_dat=%3Cproquest_cross%3E2788449134%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2788449134&rft_id=info:pmid/&rfr_iscdi=true