Tunability of auto resonance network

This paper proposes a new type of Artificial Neural Network called Auto-Resonance Network (ARN) derived from synergistic control of biological joints. The network can be tuned to any real valued input without any degradation of learning rate. Neuronal density of the network is low and grows at a lin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SN applied sciences 2020-05, Vol.2 (5), p.921, Article 921
Hauptverfasser: Aparanji, V. M., Wali, Uday V., Aparna, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a new type of Artificial Neural Network called Auto-Resonance Network (ARN) derived from synergistic control of biological joints. The network can be tuned to any real valued input without any degradation of learning rate. Neuronal density of the network is low and grows at a linear or low order polynomial rate with input classification. Input coverage of the neuron can be tuned dynamically to match properties of input data. ARN can be used as a part of hierarchical structures to support deep learning applications.
ISSN:2523-3963
2523-3971
DOI:10.1007/s42452-020-2737-9