Assessment of pine cone derived activated carbon as an adsorbent in defluoridation

A vast population of the world is vulnerable to fluoride contaminated drinking water intake, and there are various defluoridation techniques available to date as well. But the removal of fluoride is still a challenge, especially in remote rural areas because available techniques require proper super...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SN applied sciences 2020-08, Vol.2 (8), p.1407, Article 1407
Hauptverfasser: Thakur, Rahul Singh, Katoch, Surjit Singh, Modi, Ankit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A vast population of the world is vulnerable to fluoride contaminated drinking water intake, and there are various defluoridation techniques available to date as well. But the removal of fluoride is still a challenge, especially in remote rural areas because available techniques require proper supervision and equally, ineffective due to economic issues and electricity crisis. Among all methods of defluoridation, adsorption methods are found better to carry out at the community and household level but sometimes demanded a replacement of commercial activated carbon (CAC) due to economic issues and less availability in remote areas. Hence keeping this in mind, the present study assessed the pine cone activated carbon (PCAC) as adsorbent material in the defluoridation that is easy to prepare like any other agriculture-waste material. The activated carbon was prepared using KOH as an impregnating agent for activation of pine cone by pyrolysis technique at 800 °C and has been analyzed for various parameters in the fluoride removal viz. contact time, dose variation, pH and initial fluoride concentration. The maximum adsorption capacity of fluoride on pine cone activated carbon was found 1.34 mg/g of initial fluoride concentration (2–12 mg/L) at pH (6.8–7.0) with a contact period of 45 min. Also, a comparison has been made between Pine Cone Activated Carbon (PCAC) with Commercial Activated Carbon (CAC) based on obtained results. It has been suggested that Pine cone activated carbon is efficient as well as cheap adsorbent and can be used for the removal of fluoride from drinking water in rural areas.
ISSN:2523-3963
2523-3971
DOI:10.1007/s42452-020-03207-x