Interaction Mix and Match: Synthesizing Close Interaction using Conditional Hierarchical GAN with Multi‐Hot Class Embedding
Synthesizing multi‐character interactions is a challenging task due to the complex and varied interactions between the characters. In particular, precise spatiotemporal alignment between characters is required in generating close interactions such as dancing and fighting. Existing work in generating...
Gespeichert in:
Veröffentlicht in: | Computer graphics forum 2022-12, Vol.41 (8), p.327-338 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 338 |
---|---|
container_issue | 8 |
container_start_page | 327 |
container_title | Computer graphics forum |
container_volume | 41 |
creator | Goel, Aman Men, Qianhui Ho, Edmond S. L. |
description | Synthesizing multi‐character interactions is a challenging task due to the complex and varied interactions between the characters. In particular, precise spatiotemporal alignment between characters is required in generating close interactions such as dancing and fighting. Existing work in generating multi‐character interactions focuses on generating a single type of reactive motion for a given sequence which results in a lack of variety of the resultant motions. In this paper, we propose a novel way to create realistic human reactive motions which are not presented in the given dataset by mixing and matching different types of close interactions. We propose a Conditional Hierarchical Generative Adversarial Network with Multi‐Hot Class Embedding to generate the Mix and Match reactive motions of the follower from a given motion sequence of the leader. Experiments are conducted on both noisy (depth‐based) and high‐quality (MoCap‐based) interaction datasets. The quantitative and qualitative results show that our approach outperforms the state‐of‐the‐art methods on the given datasets. We also provide an augmented dataset with realistic reactive motions to stimulate future research in this area. |
doi_str_mv | 10.1111/cgf.14647 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2788408319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2788408319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2927-cd040ba03641798b018487bf3ac71f1d83c082bbd9f993c143e846c99840a7b3</originalsourceid><addsrcrecordid>eNp1kLtOwzAUhi0EEqUw8AaWmBjS2okT22xVRC9SCwPdI8dxGldpUmxHpUhIPALPyJPgtgwsnOXcvv_o6AfgFqMB9jGUq3KASULoGej5TAOWxPwc9BD2NUVxfAmurF0jhAhN4h74mDVOGSGdbhu40G9QNAVcCCerB_iyb1ylrH7XzQqmdWsV_Et39jhvm0IfelHDqfZLIystfTMZPcGddhVcdLXT359f09b5K8Ja-LjJVVF49TW4KEVt1c1v7oPl-HGZToP582SWjuaBDHlIA1kggnKBooRgylmOMCOM5mUkJMUlLlgkEQvzvOAl55HEJFKMJJJzRpCgedQHd6ezW9O-dsq6bN12xn9ss5AyD7EIc0_dnyhpWmuNKrOt0Rth9hlG2cHczJubHc317PDE7nSt9v-DWToZnxQ_4nJ8gg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2788408319</pqid></control><display><type>article</type><title>Interaction Mix and Match: Synthesizing Close Interaction using Conditional Hierarchical GAN with Multi‐Hot Class Embedding</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><creator>Goel, Aman ; Men, Qianhui ; Ho, Edmond S. L.</creator><creatorcontrib>Goel, Aman ; Men, Qianhui ; Ho, Edmond S. L.</creatorcontrib><description>Synthesizing multi‐character interactions is a challenging task due to the complex and varied interactions between the characters. In particular, precise spatiotemporal alignment between characters is required in generating close interactions such as dancing and fighting. Existing work in generating multi‐character interactions focuses on generating a single type of reactive motion for a given sequence which results in a lack of variety of the resultant motions. In this paper, we propose a novel way to create realistic human reactive motions which are not presented in the given dataset by mixing and matching different types of close interactions. We propose a Conditional Hierarchical Generative Adversarial Network with Multi‐Hot Class Embedding to generate the Mix and Match reactive motions of the follower from a given motion sequence of the leader. Experiments are conducted on both noisy (depth‐based) and high‐quality (MoCap‐based) interaction datasets. The quantitative and qualitative results show that our approach outperforms the state‐of‐the‐art methods on the given datasets. We also provide an augmented dataset with realistic reactive motions to stimulate future research in this area.</description><identifier>ISSN: 0167-7055</identifier><identifier>EISSN: 1467-8659</identifier><identifier>DOI: 10.1111/cgf.14647</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Animation ; CCS Concepts ; Computing methodologies → Motion capture ; Data augmentation ; Datasets ; Embedding ; Generative adversarial networks ; Machine learning ; Motion processing ; Synthesis</subject><ispartof>Computer graphics forum, 2022-12, Vol.41 (8), p.327-338</ispartof><rights>2023 The Authors. Computer Graphics Forum published by Eurographics ‐ The European Association for Computer Graphics and John Wiley & Sons Ltd.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2927-cd040ba03641798b018487bf3ac71f1d83c082bbd9f993c143e846c99840a7b3</cites><orcidid>0000-0001-5862-106X ; 0000-0002-0059-5484 ; 0000-0002-0995-9248</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcgf.14647$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcgf.14647$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Goel, Aman</creatorcontrib><creatorcontrib>Men, Qianhui</creatorcontrib><creatorcontrib>Ho, Edmond S. L.</creatorcontrib><title>Interaction Mix and Match: Synthesizing Close Interaction using Conditional Hierarchical GAN with Multi‐Hot Class Embedding</title><title>Computer graphics forum</title><description>Synthesizing multi‐character interactions is a challenging task due to the complex and varied interactions between the characters. In particular, precise spatiotemporal alignment between characters is required in generating close interactions such as dancing and fighting. Existing work in generating multi‐character interactions focuses on generating a single type of reactive motion for a given sequence which results in a lack of variety of the resultant motions. In this paper, we propose a novel way to create realistic human reactive motions which are not presented in the given dataset by mixing and matching different types of close interactions. We propose a Conditional Hierarchical Generative Adversarial Network with Multi‐Hot Class Embedding to generate the Mix and Match reactive motions of the follower from a given motion sequence of the leader. Experiments are conducted on both noisy (depth‐based) and high‐quality (MoCap‐based) interaction datasets. The quantitative and qualitative results show that our approach outperforms the state‐of‐the‐art methods on the given datasets. We also provide an augmented dataset with realistic reactive motions to stimulate future research in this area.</description><subject>Animation</subject><subject>CCS Concepts</subject><subject>Computing methodologies → Motion capture</subject><subject>Data augmentation</subject><subject>Datasets</subject><subject>Embedding</subject><subject>Generative adversarial networks</subject><subject>Machine learning</subject><subject>Motion processing</subject><subject>Synthesis</subject><issn>0167-7055</issn><issn>1467-8659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kLtOwzAUhi0EEqUw8AaWmBjS2okT22xVRC9SCwPdI8dxGldpUmxHpUhIPALPyJPgtgwsnOXcvv_o6AfgFqMB9jGUq3KASULoGej5TAOWxPwc9BD2NUVxfAmurF0jhAhN4h74mDVOGSGdbhu40G9QNAVcCCerB_iyb1ylrH7XzQqmdWsV_Et39jhvm0IfelHDqfZLIystfTMZPcGddhVcdLXT359f09b5K8Ja-LjJVVF49TW4KEVt1c1v7oPl-HGZToP582SWjuaBDHlIA1kggnKBooRgylmOMCOM5mUkJMUlLlgkEQvzvOAl55HEJFKMJJJzRpCgedQHd6ezW9O-dsq6bN12xn9ss5AyD7EIc0_dnyhpWmuNKrOt0Rth9hlG2cHczJubHc317PDE7nSt9v-DWToZnxQ_4nJ8gg</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Goel, Aman</creator><creator>Men, Qianhui</creator><creator>Ho, Edmond S. L.</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5862-106X</orcidid><orcidid>https://orcid.org/0000-0002-0059-5484</orcidid><orcidid>https://orcid.org/0000-0002-0995-9248</orcidid></search><sort><creationdate>202212</creationdate><title>Interaction Mix and Match: Synthesizing Close Interaction using Conditional Hierarchical GAN with Multi‐Hot Class Embedding</title><author>Goel, Aman ; Men, Qianhui ; Ho, Edmond S. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2927-cd040ba03641798b018487bf3ac71f1d83c082bbd9f993c143e846c99840a7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animation</topic><topic>CCS Concepts</topic><topic>Computing methodologies → Motion capture</topic><topic>Data augmentation</topic><topic>Datasets</topic><topic>Embedding</topic><topic>Generative adversarial networks</topic><topic>Machine learning</topic><topic>Motion processing</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goel, Aman</creatorcontrib><creatorcontrib>Men, Qianhui</creatorcontrib><creatorcontrib>Ho, Edmond S. L.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer graphics forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goel, Aman</au><au>Men, Qianhui</au><au>Ho, Edmond S. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interaction Mix and Match: Synthesizing Close Interaction using Conditional Hierarchical GAN with Multi‐Hot Class Embedding</atitle><jtitle>Computer graphics forum</jtitle><date>2022-12</date><risdate>2022</risdate><volume>41</volume><issue>8</issue><spage>327</spage><epage>338</epage><pages>327-338</pages><issn>0167-7055</issn><eissn>1467-8659</eissn><abstract>Synthesizing multi‐character interactions is a challenging task due to the complex and varied interactions between the characters. In particular, precise spatiotemporal alignment between characters is required in generating close interactions such as dancing and fighting. Existing work in generating multi‐character interactions focuses on generating a single type of reactive motion for a given sequence which results in a lack of variety of the resultant motions. In this paper, we propose a novel way to create realistic human reactive motions which are not presented in the given dataset by mixing and matching different types of close interactions. We propose a Conditional Hierarchical Generative Adversarial Network with Multi‐Hot Class Embedding to generate the Mix and Match reactive motions of the follower from a given motion sequence of the leader. Experiments are conducted on both noisy (depth‐based) and high‐quality (MoCap‐based) interaction datasets. The quantitative and qualitative results show that our approach outperforms the state‐of‐the‐art methods on the given datasets. We also provide an augmented dataset with realistic reactive motions to stimulate future research in this area.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/cgf.14647</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5862-106X</orcidid><orcidid>https://orcid.org/0000-0002-0059-5484</orcidid><orcidid>https://orcid.org/0000-0002-0995-9248</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-7055 |
ispartof | Computer graphics forum, 2022-12, Vol.41 (8), p.327-338 |
issn | 0167-7055 1467-8659 |
language | eng |
recordid | cdi_proquest_journals_2788408319 |
source | Wiley Online Library Journals Frontfile Complete; Business Source Complete |
subjects | Animation CCS Concepts Computing methodologies → Motion capture Data augmentation Datasets Embedding Generative adversarial networks Machine learning Motion processing Synthesis |
title | Interaction Mix and Match: Synthesizing Close Interaction using Conditional Hierarchical GAN with Multi‐Hot Class Embedding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A46%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interaction%20Mix%20and%20Match:%20Synthesizing%20Close%20Interaction%20using%20Conditional%20Hierarchical%20GAN%20with%20Multi%E2%80%90Hot%20Class%20Embedding&rft.jtitle=Computer%20graphics%20forum&rft.au=Goel,%20Aman&rft.date=2022-12&rft.volume=41&rft.issue=8&rft.spage=327&rft.epage=338&rft.pages=327-338&rft.issn=0167-7055&rft.eissn=1467-8659&rft_id=info:doi/10.1111/cgf.14647&rft_dat=%3Cproquest_cross%3E2788408319%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2788408319&rft_id=info:pmid/&rfr_iscdi=true |