Interaction Mix and Match: Synthesizing Close Interaction using Conditional Hierarchical GAN with Multi‐Hot Class Embedding

Synthesizing multi‐character interactions is a challenging task due to the complex and varied interactions between the characters. In particular, precise spatiotemporal alignment between characters is required in generating close interactions such as dancing and fighting. Existing work in generating...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer graphics forum 2022-12, Vol.41 (8), p.327-338
Hauptverfasser: Goel, Aman, Men, Qianhui, Ho, Edmond S. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 338
container_issue 8
container_start_page 327
container_title Computer graphics forum
container_volume 41
creator Goel, Aman
Men, Qianhui
Ho, Edmond S. L.
description Synthesizing multi‐character interactions is a challenging task due to the complex and varied interactions between the characters. In particular, precise spatiotemporal alignment between characters is required in generating close interactions such as dancing and fighting. Existing work in generating multi‐character interactions focuses on generating a single type of reactive motion for a given sequence which results in a lack of variety of the resultant motions. In this paper, we propose a novel way to create realistic human reactive motions which are not presented in the given dataset by mixing and matching different types of close interactions. We propose a Conditional Hierarchical Generative Adversarial Network with Multi‐Hot Class Embedding to generate the Mix and Match reactive motions of the follower from a given motion sequence of the leader. Experiments are conducted on both noisy (depth‐based) and high‐quality (MoCap‐based) interaction datasets. The quantitative and qualitative results show that our approach outperforms the state‐of‐the‐art methods on the given datasets. We also provide an augmented dataset with realistic reactive motions to stimulate future research in this area.
doi_str_mv 10.1111/cgf.14647
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2788408319</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2788408319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2927-cd040ba03641798b018487bf3ac71f1d83c082bbd9f993c143e846c99840a7b3</originalsourceid><addsrcrecordid>eNp1kLtOwzAUhi0EEqUw8AaWmBjS2okT22xVRC9SCwPdI8dxGldpUmxHpUhIPALPyJPgtgwsnOXcvv_o6AfgFqMB9jGUq3KASULoGej5TAOWxPwc9BD2NUVxfAmurF0jhAhN4h74mDVOGSGdbhu40G9QNAVcCCerB_iyb1ylrH7XzQqmdWsV_Et39jhvm0IfelHDqfZLIystfTMZPcGddhVcdLXT359f09b5K8Ja-LjJVVF49TW4KEVt1c1v7oPl-HGZToP582SWjuaBDHlIA1kggnKBooRgylmOMCOM5mUkJMUlLlgkEQvzvOAl55HEJFKMJJJzRpCgedQHd6ezW9O-dsq6bN12xn9ss5AyD7EIc0_dnyhpWmuNKrOt0Rth9hlG2cHczJubHc317PDE7nSt9v-DWToZnxQ_4nJ8gg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2788408319</pqid></control><display><type>article</type><title>Interaction Mix and Match: Synthesizing Close Interaction using Conditional Hierarchical GAN with Multi‐Hot Class Embedding</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Business Source Complete</source><creator>Goel, Aman ; Men, Qianhui ; Ho, Edmond S. L.</creator><creatorcontrib>Goel, Aman ; Men, Qianhui ; Ho, Edmond S. L.</creatorcontrib><description>Synthesizing multi‐character interactions is a challenging task due to the complex and varied interactions between the characters. In particular, precise spatiotemporal alignment between characters is required in generating close interactions such as dancing and fighting. Existing work in generating multi‐character interactions focuses on generating a single type of reactive motion for a given sequence which results in a lack of variety of the resultant motions. In this paper, we propose a novel way to create realistic human reactive motions which are not presented in the given dataset by mixing and matching different types of close interactions. We propose a Conditional Hierarchical Generative Adversarial Network with Multi‐Hot Class Embedding to generate the Mix and Match reactive motions of the follower from a given motion sequence of the leader. Experiments are conducted on both noisy (depth‐based) and high‐quality (MoCap‐based) interaction datasets. The quantitative and qualitative results show that our approach outperforms the state‐of‐the‐art methods on the given datasets. We also provide an augmented dataset with realistic reactive motions to stimulate future research in this area.</description><identifier>ISSN: 0167-7055</identifier><identifier>EISSN: 1467-8659</identifier><identifier>DOI: 10.1111/cgf.14647</identifier><language>eng</language><publisher>Oxford: Blackwell Publishing Ltd</publisher><subject>Animation ; CCS Concepts ; Computing methodologies → Motion capture ; Data augmentation ; Datasets ; Embedding ; Generative adversarial networks ; Machine learning ; Motion processing ; Synthesis</subject><ispartof>Computer graphics forum, 2022-12, Vol.41 (8), p.327-338</ispartof><rights>2023 The Authors. Computer Graphics Forum published by Eurographics ‐ The European Association for Computer Graphics and John Wiley &amp; Sons Ltd.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2927-cd040ba03641798b018487bf3ac71f1d83c082bbd9f993c143e846c99840a7b3</cites><orcidid>0000-0001-5862-106X ; 0000-0002-0059-5484 ; 0000-0002-0995-9248</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcgf.14647$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcgf.14647$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Goel, Aman</creatorcontrib><creatorcontrib>Men, Qianhui</creatorcontrib><creatorcontrib>Ho, Edmond S. L.</creatorcontrib><title>Interaction Mix and Match: Synthesizing Close Interaction using Conditional Hierarchical GAN with Multi‐Hot Class Embedding</title><title>Computer graphics forum</title><description>Synthesizing multi‐character interactions is a challenging task due to the complex and varied interactions between the characters. In particular, precise spatiotemporal alignment between characters is required in generating close interactions such as dancing and fighting. Existing work in generating multi‐character interactions focuses on generating a single type of reactive motion for a given sequence which results in a lack of variety of the resultant motions. In this paper, we propose a novel way to create realistic human reactive motions which are not presented in the given dataset by mixing and matching different types of close interactions. We propose a Conditional Hierarchical Generative Adversarial Network with Multi‐Hot Class Embedding to generate the Mix and Match reactive motions of the follower from a given motion sequence of the leader. Experiments are conducted on both noisy (depth‐based) and high‐quality (MoCap‐based) interaction datasets. The quantitative and qualitative results show that our approach outperforms the state‐of‐the‐art methods on the given datasets. We also provide an augmented dataset with realistic reactive motions to stimulate future research in this area.</description><subject>Animation</subject><subject>CCS Concepts</subject><subject>Computing methodologies → Motion capture</subject><subject>Data augmentation</subject><subject>Datasets</subject><subject>Embedding</subject><subject>Generative adversarial networks</subject><subject>Machine learning</subject><subject>Motion processing</subject><subject>Synthesis</subject><issn>0167-7055</issn><issn>1467-8659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kLtOwzAUhi0EEqUw8AaWmBjS2okT22xVRC9SCwPdI8dxGldpUmxHpUhIPALPyJPgtgwsnOXcvv_o6AfgFqMB9jGUq3KASULoGej5TAOWxPwc9BD2NUVxfAmurF0jhAhN4h74mDVOGSGdbhu40G9QNAVcCCerB_iyb1ylrH7XzQqmdWsV_Et39jhvm0IfelHDqfZLIystfTMZPcGddhVcdLXT359f09b5K8Ja-LjJVVF49TW4KEVt1c1v7oPl-HGZToP582SWjuaBDHlIA1kggnKBooRgylmOMCOM5mUkJMUlLlgkEQvzvOAl55HEJFKMJJJzRpCgedQHd6ezW9O-dsq6bN12xn9ss5AyD7EIc0_dnyhpWmuNKrOt0Rth9hlG2cHczJubHc317PDE7nSt9v-DWToZnxQ_4nJ8gg</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Goel, Aman</creator><creator>Men, Qianhui</creator><creator>Ho, Edmond S. L.</creator><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5862-106X</orcidid><orcidid>https://orcid.org/0000-0002-0059-5484</orcidid><orcidid>https://orcid.org/0000-0002-0995-9248</orcidid></search><sort><creationdate>202212</creationdate><title>Interaction Mix and Match: Synthesizing Close Interaction using Conditional Hierarchical GAN with Multi‐Hot Class Embedding</title><author>Goel, Aman ; Men, Qianhui ; Ho, Edmond S. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2927-cd040ba03641798b018487bf3ac71f1d83c082bbd9f993c143e846c99840a7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animation</topic><topic>CCS Concepts</topic><topic>Computing methodologies → Motion capture</topic><topic>Data augmentation</topic><topic>Datasets</topic><topic>Embedding</topic><topic>Generative adversarial networks</topic><topic>Machine learning</topic><topic>Motion processing</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goel, Aman</creatorcontrib><creatorcontrib>Men, Qianhui</creatorcontrib><creatorcontrib>Ho, Edmond S. L.</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer graphics forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goel, Aman</au><au>Men, Qianhui</au><au>Ho, Edmond S. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interaction Mix and Match: Synthesizing Close Interaction using Conditional Hierarchical GAN with Multi‐Hot Class Embedding</atitle><jtitle>Computer graphics forum</jtitle><date>2022-12</date><risdate>2022</risdate><volume>41</volume><issue>8</issue><spage>327</spage><epage>338</epage><pages>327-338</pages><issn>0167-7055</issn><eissn>1467-8659</eissn><abstract>Synthesizing multi‐character interactions is a challenging task due to the complex and varied interactions between the characters. In particular, precise spatiotemporal alignment between characters is required in generating close interactions such as dancing and fighting. Existing work in generating multi‐character interactions focuses on generating a single type of reactive motion for a given sequence which results in a lack of variety of the resultant motions. In this paper, we propose a novel way to create realistic human reactive motions which are not presented in the given dataset by mixing and matching different types of close interactions. We propose a Conditional Hierarchical Generative Adversarial Network with Multi‐Hot Class Embedding to generate the Mix and Match reactive motions of the follower from a given motion sequence of the leader. Experiments are conducted on both noisy (depth‐based) and high‐quality (MoCap‐based) interaction datasets. The quantitative and qualitative results show that our approach outperforms the state‐of‐the‐art methods on the given datasets. We also provide an augmented dataset with realistic reactive motions to stimulate future research in this area.</abstract><cop>Oxford</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/cgf.14647</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5862-106X</orcidid><orcidid>https://orcid.org/0000-0002-0059-5484</orcidid><orcidid>https://orcid.org/0000-0002-0995-9248</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-7055
ispartof Computer graphics forum, 2022-12, Vol.41 (8), p.327-338
issn 0167-7055
1467-8659
language eng
recordid cdi_proquest_journals_2788408319
source Wiley Online Library Journals Frontfile Complete; Business Source Complete
subjects Animation
CCS Concepts
Computing methodologies → Motion capture
Data augmentation
Datasets
Embedding
Generative adversarial networks
Machine learning
Motion processing
Synthesis
title Interaction Mix and Match: Synthesizing Close Interaction using Conditional Hierarchical GAN with Multi‐Hot Class Embedding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A46%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interaction%20Mix%20and%20Match:%20Synthesizing%20Close%20Interaction%20using%20Conditional%20Hierarchical%20GAN%20with%20Multi%E2%80%90Hot%20Class%20Embedding&rft.jtitle=Computer%20graphics%20forum&rft.au=Goel,%20Aman&rft.date=2022-12&rft.volume=41&rft.issue=8&rft.spage=327&rft.epage=338&rft.pages=327-338&rft.issn=0167-7055&rft.eissn=1467-8659&rft_id=info:doi/10.1111/cgf.14647&rft_dat=%3Cproquest_cross%3E2788408319%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2788408319&rft_id=info:pmid/&rfr_iscdi=true