Interaction Mix and Match: Synthesizing Close Interaction using Conditional Hierarchical GAN with Multi‐Hot Class Embedding

Synthesizing multi‐character interactions is a challenging task due to the complex and varied interactions between the characters. In particular, precise spatiotemporal alignment between characters is required in generating close interactions such as dancing and fighting. Existing work in generating...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer graphics forum 2022-12, Vol.41 (8), p.327-338
Hauptverfasser: Goel, Aman, Men, Qianhui, Ho, Edmond S. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Synthesizing multi‐character interactions is a challenging task due to the complex and varied interactions between the characters. In particular, precise spatiotemporal alignment between characters is required in generating close interactions such as dancing and fighting. Existing work in generating multi‐character interactions focuses on generating a single type of reactive motion for a given sequence which results in a lack of variety of the resultant motions. In this paper, we propose a novel way to create realistic human reactive motions which are not presented in the given dataset by mixing and matching different types of close interactions. We propose a Conditional Hierarchical Generative Adversarial Network with Multi‐Hot Class Embedding to generate the Mix and Match reactive motions of the follower from a given motion sequence of the leader. Experiments are conducted on both noisy (depth‐based) and high‐quality (MoCap‐based) interaction datasets. The quantitative and qualitative results show that our approach outperforms the state‐of‐the‐art methods on the given datasets. We also provide an augmented dataset with realistic reactive motions to stimulate future research in this area.
ISSN:0167-7055
1467-8659
DOI:10.1111/cgf.14647