Particle size effect of SiO2-supported ZnO catalysts in propane dehydrogenation
Propane dehydrogenation (PDH) has shown great potential to meet the increasing global demand for propylene. However, industrial Pt- and Cr-based catalysts are either costly or toxic. The development of cost-efficient and environmentally friendly catalysts is highly desirable. Herein, we synthesized...
Gespeichert in:
Veröffentlicht in: | Catalysis science & technology 2023-03, Vol.13 (6), p.1866-1873 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Propane dehydrogenation (PDH) has shown great potential to meet the increasing global demand for propylene. However, industrial Pt- and Cr-based catalysts are either costly or toxic. The development of cost-efficient and environmentally friendly catalysts is highly desirable. Herein, we synthesized a series of SiO2-supported ZnO catalysts (ZnO/SiO2) from atomically dispersed species to particles of a few nanometers and to continuous films using atomic layer deposition. In the PDH reaction, we showed that the mass specific rates and propylene selectivity both exhibited a volcano relationship with the size of ZnO, where a ZnO/SiO2 catalyst with a size of approximately 4.8 nm had the maximum PDH activity and a propylene selectivity of 95%, along with good long-term stability for at least 10 h. Photoluminescence spectroscopy and temperature-programmed desorption of NH3 revealed that the amount of oxygen vacancies and acidity sites in ZnO had the same trend with the PDH activity as a function of ZnO size and reached the maximum on the 4.8 nm-sized ZnO/SiO2 catalyst. This result suggests that unsaturated Zn cations accompanied by oxygen vacancies are the active sites for the activation of C–H bonds in propane. |
---|---|
ISSN: | 2044-4753 2044-4761 |
DOI: | 10.1039/d2cy02131e |