Integrability, random matrices and Painlevé transcendents

The probability that an interval I is free of eigenvalues in a matrix ensemble with unitary symmetry is given by a Fredholm determinant. When the weight function in the matrix ensemble is a classical weight function, and the interval I includes an endpoint of the support, Tracy and Widom have given...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The ANZIAM journal 2002-07, Vol.44 (1), p.41-50
Hauptverfasser: Witte, N. S., Forrester, P. J., Cosgrove, Christopher M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The probability that an interval I is free of eigenvalues in a matrix ensemble with unitary symmetry is given by a Fredholm determinant. When the weight function in the matrix ensemble is a classical weight function, and the interval I includes an endpoint of the support, Tracy and Widom have given a formalism which gives coupled differential equations for the required probability and some auxiliary quantities. We summarize and extend earlier work by expressing the probability and some of the auxiliary quantities in terms of Painlevé transcendents.
ISSN:1446-1811
1446-8735
DOI:10.1017/S1446181100007896