Partition and Disjoint Cycles in Digraphs
Let D be a digraph, we use δ + ( D ) to denote the minimum out-degree of D . In 2006, Alon proposed a problem stating that if there exists an integer function F ( d 1 , … , d k ) for a digraph D such that if δ + ( D ) ≥ F ( d 1 , … , d k ) , then V ( D ) can be partitioned into k parts V 1 , … , V k...
Gespeichert in:
Veröffentlicht in: | Graphs and combinatorics 2023-04, Vol.39 (2), Article 34 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Graphs and combinatorics |
container_volume | 39 |
creator | Song, Chunjiao Yan, Jin |
description | Let
D
be a digraph, we use
δ
+
(
D
)
to denote the minimum out-degree of
D
. In 2006, Alon proposed a problem stating that if there exists an integer function
F
(
d
1
,
…
,
d
k
)
for a digraph
D
such that if
δ
+
(
D
)
≥
F
(
d
1
,
…
,
d
k
)
, then
V
(
D
) can be partitioned into
k
parts
V
1
,
…
,
V
k
with
δ
+
(
D
[
V
i
]
)
≥
d
i
for each
i
∈
[
k
]
, here
D
[
V
i
]
denotes the induced subdigraph of
V
i
. We prove that
F
(
d
1
,
…
,
d
k
)
≤
2
(
d
1
+
⋯
+
d
k
)
under the condition that the maximum in-degree is bounded and
ln
k
2
<
min
{
d
1
,
⋯
,
d
k
}
by using Lovász Local Lemma. Furthermore, we show that some regular digraphs, and digraphs of small order can be partitioned into
k
parts such that both the minimum in-degree and the minimum out-degree of the digraph induced by each part are at least
d
i
for each
i
∈
[
k
]
. Based on the results above, we further give lower bounds of the minimum out-degree of some special class digraphs containing
k
vertex disjoint cycles of different lengths. |
doi_str_mv | 10.1007/s00373-023-02631-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2788158887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2788158887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-9e7ffbf3e5722fb96e63f7cf861bb28df5404e1a0e4482907d39debc7a26e9bd3</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMoWFdfwFPBk4foTJI2yVFWV4UFPeg5pG2ytqxpTbqHfXu7VvDmYRgYvv8f-Ai5RLhBAHmbALjkFNhhSo4Uj0iGghe00CiOSQYakQKiPiVnKXUAUKCAjFy_2ji2Y9uH3IYmv29T17dhzJf7eutS3obptIl2-Ejn5MTbbXIXv3tB3lcPb8snun55fF7erWnNJIxUO-l95bkrJGO-0qUruZe1VyVWFVONLwQIhxacEIppkA3XjatqaVnpdNXwBbmae4fYf-1cGk3X72KYXhomlcJCKSUnis1UHfuUovNmiO2njXuDYA5KzKzETErMjxKDU4jPoTTBYePiX_U_qW-nU2K0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2788158887</pqid></control><display><type>article</type><title>Partition and Disjoint Cycles in Digraphs</title><source>SpringerLink Journals - AutoHoldings</source><creator>Song, Chunjiao ; Yan, Jin</creator><creatorcontrib>Song, Chunjiao ; Yan, Jin</creatorcontrib><description>Let
D
be a digraph, we use
δ
+
(
D
)
to denote the minimum out-degree of
D
. In 2006, Alon proposed a problem stating that if there exists an integer function
F
(
d
1
,
…
,
d
k
)
for a digraph
D
such that if
δ
+
(
D
)
≥
F
(
d
1
,
…
,
d
k
)
, then
V
(
D
) can be partitioned into
k
parts
V
1
,
…
,
V
k
with
δ
+
(
D
[
V
i
]
)
≥
d
i
for each
i
∈
[
k
]
, here
D
[
V
i
]
denotes the induced subdigraph of
V
i
. We prove that
F
(
d
1
,
…
,
d
k
)
≤
2
(
d
1
+
⋯
+
d
k
)
under the condition that the maximum in-degree is bounded and
ln
k
2
<
min
{
d
1
,
⋯
,
d
k
}
by using Lovász Local Lemma. Furthermore, we show that some regular digraphs, and digraphs of small order can be partitioned into
k
parts such that both the minimum in-degree and the minimum out-degree of the digraph induced by each part are at least
d
i
for each
i
∈
[
k
]
. Based on the results above, we further give lower bounds of the minimum out-degree of some special class digraphs containing
k
vertex disjoint cycles of different lengths.</description><identifier>ISSN: 0911-0119</identifier><identifier>EISSN: 1435-5914</identifier><identifier>DOI: 10.1007/s00373-023-02631-1</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Combinatorics ; Engineering Design ; Graph theory ; Lower bounds ; Mathematics ; Mathematics and Statistics ; Original Paper</subject><ispartof>Graphs and combinatorics, 2023-04, Vol.39 (2), Article 34</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Japan KK, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-9e7ffbf3e5722fb96e63f7cf861bb28df5404e1a0e4482907d39debc7a26e9bd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00373-023-02631-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00373-023-02631-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Song, Chunjiao</creatorcontrib><creatorcontrib>Yan, Jin</creatorcontrib><title>Partition and Disjoint Cycles in Digraphs</title><title>Graphs and combinatorics</title><addtitle>Graphs and Combinatorics</addtitle><description>Let
D
be a digraph, we use
δ
+
(
D
)
to denote the minimum out-degree of
D
. In 2006, Alon proposed a problem stating that if there exists an integer function
F
(
d
1
,
…
,
d
k
)
for a digraph
D
such that if
δ
+
(
D
)
≥
F
(
d
1
,
…
,
d
k
)
, then
V
(
D
) can be partitioned into
k
parts
V
1
,
…
,
V
k
with
δ
+
(
D
[
V
i
]
)
≥
d
i
for each
i
∈
[
k
]
, here
D
[
V
i
]
denotes the induced subdigraph of
V
i
. We prove that
F
(
d
1
,
…
,
d
k
)
≤
2
(
d
1
+
⋯
+
d
k
)
under the condition that the maximum in-degree is bounded and
ln
k
2
<
min
{
d
1
,
⋯
,
d
k
}
by using Lovász Local Lemma. Furthermore, we show that some regular digraphs, and digraphs of small order can be partitioned into
k
parts such that both the minimum in-degree and the minimum out-degree of the digraph induced by each part are at least
d
i
for each
i
∈
[
k
]
. Based on the results above, we further give lower bounds of the minimum out-degree of some special class digraphs containing
k
vertex disjoint cycles of different lengths.</description><subject>Combinatorics</subject><subject>Engineering Design</subject><subject>Graph theory</subject><subject>Lower bounds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><issn>0911-0119</issn><issn>1435-5914</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMoWFdfwFPBk4foTJI2yVFWV4UFPeg5pG2ytqxpTbqHfXu7VvDmYRgYvv8f-Ai5RLhBAHmbALjkFNhhSo4Uj0iGghe00CiOSQYakQKiPiVnKXUAUKCAjFy_2ji2Y9uH3IYmv29T17dhzJf7eutS3obptIl2-Ejn5MTbbXIXv3tB3lcPb8snun55fF7erWnNJIxUO-l95bkrJGO-0qUruZe1VyVWFVONLwQIhxacEIppkA3XjatqaVnpdNXwBbmae4fYf-1cGk3X72KYXhomlcJCKSUnis1UHfuUovNmiO2njXuDYA5KzKzETErMjxKDU4jPoTTBYePiX_U_qW-nU2K0</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Song, Chunjiao</creator><creator>Yan, Jin</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20230401</creationdate><title>Partition and Disjoint Cycles in Digraphs</title><author>Song, Chunjiao ; Yan, Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-9e7ffbf3e5722fb96e63f7cf861bb28df5404e1a0e4482907d39debc7a26e9bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Combinatorics</topic><topic>Engineering Design</topic><topic>Graph theory</topic><topic>Lower bounds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Chunjiao</creatorcontrib><creatorcontrib>Yan, Jin</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Graphs and combinatorics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Chunjiao</au><au>Yan, Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Partition and Disjoint Cycles in Digraphs</atitle><jtitle>Graphs and combinatorics</jtitle><stitle>Graphs and Combinatorics</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>39</volume><issue>2</issue><artnum>34</artnum><issn>0911-0119</issn><eissn>1435-5914</eissn><abstract>Let
D
be a digraph, we use
δ
+
(
D
)
to denote the minimum out-degree of
D
. In 2006, Alon proposed a problem stating that if there exists an integer function
F
(
d
1
,
…
,
d
k
)
for a digraph
D
such that if
δ
+
(
D
)
≥
F
(
d
1
,
…
,
d
k
)
, then
V
(
D
) can be partitioned into
k
parts
V
1
,
…
,
V
k
with
δ
+
(
D
[
V
i
]
)
≥
d
i
for each
i
∈
[
k
]
, here
D
[
V
i
]
denotes the induced subdigraph of
V
i
. We prove that
F
(
d
1
,
…
,
d
k
)
≤
2
(
d
1
+
⋯
+
d
k
)
under the condition that the maximum in-degree is bounded and
ln
k
2
<
min
{
d
1
,
⋯
,
d
k
}
by using Lovász Local Lemma. Furthermore, we show that some regular digraphs, and digraphs of small order can be partitioned into
k
parts such that both the minimum in-degree and the minimum out-degree of the digraph induced by each part are at least
d
i
for each
i
∈
[
k
]
. Based on the results above, we further give lower bounds of the minimum out-degree of some special class digraphs containing
k
vertex disjoint cycles of different lengths.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s00373-023-02631-1</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0911-0119 |
ispartof | Graphs and combinatorics, 2023-04, Vol.39 (2), Article 34 |
issn | 0911-0119 1435-5914 |
language | eng |
recordid | cdi_proquest_journals_2788158887 |
source | SpringerLink Journals - AutoHoldings |
subjects | Combinatorics Engineering Design Graph theory Lower bounds Mathematics Mathematics and Statistics Original Paper |
title | Partition and Disjoint Cycles in Digraphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T11%3A08%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Partition%20and%20Disjoint%20Cycles%20in%20Digraphs&rft.jtitle=Graphs%20and%20combinatorics&rft.au=Song,%20Chunjiao&rft.date=2023-04-01&rft.volume=39&rft.issue=2&rft.artnum=34&rft.issn=0911-0119&rft.eissn=1435-5914&rft_id=info:doi/10.1007/s00373-023-02631-1&rft_dat=%3Cproquest_cross%3E2788158887%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2788158887&rft_id=info:pmid/&rfr_iscdi=true |