Partition and Disjoint Cycles in Digraphs
Let D be a digraph, we use δ + ( D ) to denote the minimum out-degree of D . In 2006, Alon proposed a problem stating that if there exists an integer function F ( d 1 , … , d k ) for a digraph D such that if δ + ( D ) ≥ F ( d 1 , … , d k ) , then V ( D ) can be partitioned into k parts V 1 , … , V k...
Gespeichert in:
Veröffentlicht in: | Graphs and combinatorics 2023-04, Vol.39 (2), Article 34 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
D
be a digraph, we use
δ
+
(
D
)
to denote the minimum out-degree of
D
. In 2006, Alon proposed a problem stating that if there exists an integer function
F
(
d
1
,
…
,
d
k
)
for a digraph
D
such that if
δ
+
(
D
)
≥
F
(
d
1
,
…
,
d
k
)
, then
V
(
D
) can be partitioned into
k
parts
V
1
,
…
,
V
k
with
δ
+
(
D
[
V
i
]
)
≥
d
i
for each
i
∈
[
k
]
, here
D
[
V
i
]
denotes the induced subdigraph of
V
i
. We prove that
F
(
d
1
,
…
,
d
k
)
≤
2
(
d
1
+
⋯
+
d
k
)
under the condition that the maximum in-degree is bounded and
ln
k
2
<
min
{
d
1
,
⋯
,
d
k
}
by using Lovász Local Lemma. Furthermore, we show that some regular digraphs, and digraphs of small order can be partitioned into
k
parts such that both the minimum in-degree and the minimum out-degree of the digraph induced by each part are at least
d
i
for each
i
∈
[
k
]
. Based on the results above, we further give lower bounds of the minimum out-degree of some special class digraphs containing
k
vertex disjoint cycles of different lengths. |
---|---|
ISSN: | 0911-0119 1435-5914 |
DOI: | 10.1007/s00373-023-02631-1 |