Quantitative Bounds Versus Existence of Weakly Coupled Bound States for Schrödinger Type Operators
It is well-known that for usual Schrödinger operators weakly coupled bound states exist in dimensions one and two, whereas in higher dimensions the famous Cwikel–Lieb–Rozenblum bound holds. We show for a large class of Schrödinger-type operators with general kinetic energies that these two phenomena...
Gespeichert in:
Veröffentlicht in: | Annales Henri Poincaré 2023-03, Vol.24 (3), p.783-842 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is well-known that for usual Schrödinger operators weakly coupled bound states exist in dimensions one and two, whereas in higher dimensions the famous Cwikel–Lieb–Rozenblum bound holds. We show for a large class of Schrödinger-type operators with general kinetic energies that these two phenomena are complementary. We explicitly get a natural semi-classical type bound on the number of bound states precisely in the situation when weakly coupled bound states exist not. |
---|---|
ISSN: | 1424-0637 1424-0661 |
DOI: | 10.1007/s00023-022-01228-3 |