Branching Brownian Motion with Self-Repulsion

We consider a model of branching Brownian motion with self-repulsion. Self-repulsion is introduced via a change of measure that penalises particles spending time in an ϵ -neighbourhood of each other. We derive a simplified version of the model where only branching events are penalised. This model is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales Henri Poincaré 2023-03, Vol.24 (3), p.931-956
Hauptverfasser: Bovier, Anton, Hartung, Lisa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a model of branching Brownian motion with self-repulsion. Self-repulsion is introduced via a change of measure that penalises particles spending time in an ϵ -neighbourhood of each other. We derive a simplified version of the model where only branching events are penalised. This model is almost exactly solvable, and we derive a precise description of the particle numbers and branching times. In the limit of weak penalty, an interesting universal time-inhomogeneous branching process emerges. The position of the maximum is governed by a F-KPP type reaction-diffusion equation with a time-dependent reaction term.
ISSN:1424-0637
1424-0661
DOI:10.1007/s00023-022-01223-8