Critical functions and blow-up asymptotics for the fractional Brezis–Nirenberg problem in low dimension

For s ∈ ( 0 , 1 ) , N > 2 s , and a bounded open set Ω ⊂ R N with C 2 boundary, we study the fractional Brezis–Nirenberg type minimization problem of finding S ( a ) : = inf ∫ R N | ( - Δ ) s / 2 u | 2 + ∫ Ω a u 2 ∫ Ω u 2 N N - 2 s N - 2 s N , where the infimum is taken over all functions u ∈ H s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2023-05, Vol.62 (4), Article 114
Hauptverfasser: De Nitti, Nicola, König, Tobias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For s ∈ ( 0 , 1 ) , N > 2 s , and a bounded open set Ω ⊂ R N with C 2 boundary, we study the fractional Brezis–Nirenberg type minimization problem of finding S ( a ) : = inf ∫ R N | ( - Δ ) s / 2 u | 2 + ∫ Ω a u 2 ∫ Ω u 2 N N - 2 s N - 2 s N , where the infimum is taken over all functions u ∈ H s ( R N ) that vanish outside Ω . The function a is assumed to be critical in the sense of Hebey and Vaugon. For low dimensions N ∈ ( 2 s , 4 s ) , we prove that the Robin function ϕ a satisfies inf x ∈ Ω ϕ a ( x ) = 0 , which extends a result obtained by Druet for s = 1 . In dimensions N ∈ ( 8 s / 3 , 4 s ) , we then study the asymptotics of the fractional Brezis–Nirenberg energy S ( a + ε V ) for some V ∈ L ∞ ( Ω ) as ε → 0 + . We give a precise description of the blow-up profile of (almost) minimizing sequences and characterize the concentration speed and the location of concentration points.
ISSN:0944-2669
1432-0835
DOI:10.1007/s00526-023-02446-1