Critical functions and blow-up asymptotics for the fractional Brezis–Nirenberg problem in low dimension
For s ∈ ( 0 , 1 ) , N > 2 s , and a bounded open set Ω ⊂ R N with C 2 boundary, we study the fractional Brezis–Nirenberg type minimization problem of finding S ( a ) : = inf ∫ R N | ( - Δ ) s / 2 u | 2 + ∫ Ω a u 2 ∫ Ω u 2 N N - 2 s N - 2 s N , where the infimum is taken over all functions u ∈ H s...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2023-05, Vol.62 (4), Article 114 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For
s
∈
(
0
,
1
)
,
N
>
2
s
, and a bounded open set
Ω
⊂
R
N
with
C
2
boundary, we study the fractional Brezis–Nirenberg type minimization problem of finding
S
(
a
)
:
=
inf
∫
R
N
|
(
-
Δ
)
s
/
2
u
|
2
+
∫
Ω
a
u
2
∫
Ω
u
2
N
N
-
2
s
N
-
2
s
N
,
where the infimum is taken over all functions
u
∈
H
s
(
R
N
)
that vanish outside
Ω
. The function
a
is assumed to be critical in the sense of Hebey and Vaugon. For low dimensions
N
∈
(
2
s
,
4
s
)
, we prove that the Robin function
ϕ
a
satisfies
inf
x
∈
Ω
ϕ
a
(
x
)
=
0
, which extends a result obtained by Druet for
s
=
1
. In dimensions
N
∈
(
8
s
/
3
,
4
s
)
, we then study the asymptotics of the fractional Brezis–Nirenberg energy
S
(
a
+
ε
V
)
for some
V
∈
L
∞
(
Ω
)
as
ε
→
0
+
. We give a precise description of the blow-up profile of (almost) minimizing sequences and characterize the concentration speed and the location of concentration points. |
---|---|
ISSN: | 0944-2669 1432-0835 |
DOI: | 10.1007/s00526-023-02446-1 |