The Interrelation of Motions of Dynamical Systems in a Metric Space
It is shown that if the positive (negative) semitrajectory of some motion , located in a metric space , is relatively compact then the - ( -) limit set of that motion is a compact minimal set. It follows that in the space any non-recurrent motion is either positively (negatively) departing or positi...
Gespeichert in:
Veröffentlicht in: | Lobachevskii journal of mathematics 2022-12, Vol.43 (12), p.3414-3419 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is shown that if the positive (negative) semitrajectory of some motion
, located in a metric space
, is relatively compact then the
- (
-) limit set of that motion is a compact minimal set. It follows that in the space
any non-recurrent motion is either positively (negatively) departing or positively (negatively) asymptotic with respect to the corresponding compact minimal set. |
---|---|
ISSN: | 1995-0802 1818-9962 |
DOI: | 10.1134/S1995080222150033 |