SealFSv2: combining storage-based and ratcheting for tamper-evident logging

Tamper-evident logging is paramount for forensic audits and accountability subsystems. It is based on a forward integrity model: upon intrusion, the attacker is not able to counterfeit the logging data generated before controlling the system. There are local and distributed solutions to this problem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of information security 2023-04, Vol.22 (2), p.447-466
Hauptverfasser: Guardiola-Múzquiz, Gorka, Soriano-Salvador, Enrique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tamper-evident logging is paramount for forensic audits and accountability subsystems. It is based on a forward integrity model: upon intrusion, the attacker is not able to counterfeit the logging data generated before controlling the system. There are local and distributed solutions to this problem. Distributed solutions are suitable for common scenarios, albeit not appropriate for autonomous and loosely connected systems. Moreover, they can be complex and introduce new security issues. Traditional local tamper-evident logging systems use cryptographic ratchets. In previous works, we presented SealFS (from now on, SealFSv1), a system that follows a radically different approach for local tamper-evident logging based on keystream storage. In this paper, we present a new version, SealFSv2, which combines ratcheting and storage-based log anti-tamper protection. This new approach is flexible and enables the user to decide between complete theoretical security (like in SealFSv1) and partial linear degradation (like in a classical ratchet scheme), exchanging storage for computation with user-defined parameters to balance security and resource usage. We also describe an implementation of this scheme. This implementation, which showcases our approach, is an optimized evolution of the original sealfs Linux kernel module. It implements a stackable file system that enables transparent tamper-evident logging to all user space applications and provides instant deployability. Last, we present a complete performance evaluation of our current implementation and a fair performance comparison of the two opposite approaches for local tamper-evident logging (i.e., storage-based vs. ratcheting). This comparison suggests that, on current systems and general-purpose hardware, the storage-based approach and hybrid schemes perform better than the traditional ratchet approach.
ISSN:1615-5262
1615-5270
DOI:10.1007/s10207-022-00643-1