A Battery Capacity Estimation Framework Combining Hybrid Deep Neural Network and Regional Capacity Calculation Based on Real-World Operating Data

Efficient battery capacity estimation is of utmost importance for safe and reliable operations of electric vehicles (EVs). This article proposes a battery capacity estimation framework based on real-world EV operating data collected from forty electric buses of the same model operating in two cities...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2023-08, Vol.70 (8), p.8499-8508
Hauptverfasser: Wang, Qiushi, Wang, Zhenpo, Zhang, Lei, Liu, Peng, Zhou, Litao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Efficient battery capacity estimation is of utmost importance for safe and reliable operations of electric vehicles (EVs). This article proposes a battery capacity estimation framework based on real-world EV operating data collected from forty electric buses of the same model operating in two cities. First, a reference capacity calculation method is presented by combining the Coulomb counting method with the incremental capacity analysis method. Then, the impacts of temperature, current, and state-of-charge on battery degradation are quantitatively analyzed. Using the historical probability distributions as battery health features, a hybrid deep neural network model that combines a convolutional neural network with a fully connected neural network is proposed for battery capacity estimation. The validation results show that the proposed model outperforms the state-of-the-art methods and reaches a mean absolute percentage error of 2.79%, while maintaining low computational cost.
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2022.3229350