Triebel-Lizorkin Spaces of Para-Accretive Type and a Tb Theorem
In this article, we use a discrete Calderón-type reproducing formula and Plancherel-Pôlya-type inequality associated to a para-accretive function to characterize the Triebel-Lizorkin spaces of para-accretive type , which reduces to the classical Triebel-Lizorkin spaces when the para-accretive functi...
Gespeichert in:
Veröffentlicht in: | The Journal of geometric analysis 2009-07, Vol.19 (3), p.667-694 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we use a discrete Calderón-type reproducing formula and Plancherel-Pôlya-type inequality associated to a para-accretive function to characterize the Triebel-Lizorkin spaces of para-accretive type
, which reduces to the classical Triebel-Lizorkin spaces when the para-accretive function is constant. Moreover, we give a necessary and sufficient condition for the
boundedness of paraproduct operators. From this, we show that a generalized singular integral operator
T
with
M
b
TM
b
∈
WBP
is bounded from
to
if and only if
and
T
*
b
=0 for
and
, where
ε
is the regularity exponent of the kernel of
T
. |
---|---|
ISSN: | 1050-6926 1559-002X |
DOI: | 10.1007/s12220-009-9072-0 |