Triebel-Lizorkin Spaces of Para-Accretive Type and a Tb Theorem

In this article, we use a discrete Calderón-type reproducing formula and Plancherel-Pôlya-type inequality associated to a para-accretive function to characterize the Triebel-Lizorkin spaces of para-accretive type , which reduces to the classical Triebel-Lizorkin spaces when the para-accretive functi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of geometric analysis 2009-07, Vol.19 (3), p.667-694
Hauptverfasser: Lin, Chin-Cheng, Wang, Kunchuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, we use a discrete Calderón-type reproducing formula and Plancherel-Pôlya-type inequality associated to a para-accretive function to characterize the Triebel-Lizorkin spaces of para-accretive type , which reduces to the classical Triebel-Lizorkin spaces when the para-accretive function is constant. Moreover, we give a necessary and sufficient condition for the boundedness of paraproduct operators. From this, we show that a generalized singular integral operator T with M b TM b ∈ WBP is bounded from to if and only if and T * b =0 for and , where ε is the regularity exponent of the kernel of T .
ISSN:1050-6926
1559-002X
DOI:10.1007/s12220-009-9072-0