Long binary narrow-sense BCH codes are normal
Let C be the binary narrow-sense BCH code of length n = (2m − l)/h, where m is the order of 2 modulo n. Using characters of finite fields and a theorem of Weil, and results of Vladut-Skorobogatov and Lang-Weil we prove that the code C is normal in the non-primitive case h > 1 if 2m ≥ 4(2th)4t + 2...
Gespeichert in:
Veröffentlicht in: | Applicable algebra in engineering, communication and computing communication and computing, 1997-01, Vol.8 (1), p.49-55 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let C be the binary narrow-sense BCH code of length n = (2m − l)/h, where m is the order of 2 modulo n. Using characters of finite fields and a theorem of Weil, and results of Vladut-Skorobogatov and Lang-Weil we prove that the code C is normal in the non-primitive case h > 1 if 2m ≥ 4(2th)4t + 2, and in the primitive case h = 1 if m ≥ m0 where the constant m0 depends only on t. |
---|---|
ISSN: | 0938-1279 1432-0622 |
DOI: | 10.1007/s002000050052 |