ILLUSORY MODELS OF PEANO ARITHMETIC

By using a provability predicate of PA, we define ThmPA(M) as the set of theorems of PA in a model M of PA. We say a model M of PA is (1) illusory if ThmPA(M) ⊈ ThmPA(ℕ), (2) heterodox if ThmPA(M) ⊈ TA, (3) sane if M ⊨ ConPA, and insane if it is not sane, (4) maximally sane if it is sane and ThmPA(M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of symbolic logic 2016-09, Vol.81 (3), p.1163-1175
Hauptverfasser: KIKUCHI, MAKOTO, KURAHASHI, TAISHI
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:By using a provability predicate of PA, we define ThmPA(M) as the set of theorems of PA in a model M of PA. We say a model M of PA is (1) illusory if ThmPA(M) ⊈ ThmPA(ℕ), (2) heterodox if ThmPA(M) ⊈ TA, (3) sane if M ⊨ ConPA, and insane if it is not sane, (4) maximally sane if it is sane and ThmPA(M) ⊆ ThmPA(N) implies ThmPA(M) = ThmPA(N) for every sane model N of PA. We firstly show that M is heterodox if and only if it is illusory, and that ThmPA(M) ∩ TA ≠ ThmPA(ℕ) for any illusory model M. Then we show that there exists a maximally sane model, every maximally sane model satisfies ¬ConPA + ConPA, and there exists a sane model of ¬ConPA + ConPA which is not maximally sane. We define that an insane model is (5) illusory by nature if its every initial segment being a nonstandard model of PA is illusory, and (6) going insane suddenly if its every initial segment being a sane model of PA is not illusory. We show that there exists a model of PA which is illusory by nature, and we prove the existence of a model of PA which is going insane suddenly.
ISSN:0022-4812
1943-5886
DOI:10.1017/jsl.2015.52