A generalization of Obata’s theorem

In a complete Riemannian manifold (M, g) if the hessian of a real-valued function satisfies some suitable conditions, then it restricts the geometry of (M, g). In this paper we characterize all compact rank-one symmetric spaces as those Riemannian manifolds (M, g) admitting a real-valued functionu s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of geometric analysis 1997, Vol.7 (3), p.357-375
Hauptverfasser: Ranjan, Akhil, Santhanam, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In a complete Riemannian manifold (M, g) if the hessian of a real-valued function satisfies some suitable conditions, then it restricts the geometry of (M, g). In this paper we characterize all compact rank-one symmetric spaces as those Riemannian manifolds (M, g) admitting a real-valued functionu such that the hessian ofu has at most two eigenvalues −u and under some mild hypotheses on (M, g). This generalizes a well-known result of Obata which characterizes all round spheres.
ISSN:1050-6926
1559-002X
DOI:10.1007/BF02921625