Convergence of cascade algorithm for individual initial function and arbitrary refinement masks
The cascade algorithm plays an important role in computer graphics and wavelet analysis. For any initial function σ0, a cascade sequence (σn)∞n=1 is constructed by the iteration σn = Caσn-1,n = 1, 2, …, where Ca is defined by . In this paper, we characterize the convergence of a cascade sequence in...
Gespeichert in:
Veröffentlicht in: | Science China. Mathematics 2005-01, Vol.48 (3), p.350-359 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The cascade algorithm plays an important role in computer graphics and wavelet analysis. For any initial function σ0, a cascade sequence (σn)∞n=1 is constructed by the iteration σn = Caσn-1,n = 1, 2, …, where Ca is defined by . In this paper, we characterize the convergence of a cascade sequence in terms of a sequence of functions and in terms of joint spectral radius. As a consequence, it is proved that any convergent cascade sequence has a convergence rate of geometry, i.e., ‖φn+1-φn‖Lp(ℝ)= O(ϱn) for some ϱ ∈ (0,1). The condition of sum rules for the mask is not required. Finally, an example is presented to illustrate our theory. |
---|---|
ISSN: | 1006-9283 1674-7283 1869-1862 |
DOI: | 10.1360/03ys0187 |