Synthesis and consolidation of γ-Ni-Fe nanoalloy powder
The present work studies the synthesis and consolidation of γ-Ni-Fe nanoalloy powder by the mechano-chemical process comprising high-energy ball-milling of NiO-Fe2O3 powder and a subsequent hydrogen reduction process. To examine the formation mechanism of the nanoalloy powder, the effect of the oxid...
Gespeichert in:
Veröffentlicht in: | Metals and materials (Seoul, Korea) Korea), 1999, Vol.5 (2), p.115-120 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The present work studies the synthesis and consolidation of γ-Ni-Fe nanoalloy powder by the mechano-chemical process comprising high-energy ball-milling of NiO-Fe2O3 powder and a subsequent hydrogen reduction process. To examine the formation mechanism of the nanoalloy powder, the effect of the oxide powder char-acteristics on the reduction process and alloying was investigated by varying the ball-milling time. The reduction process and the alloying of the γ-Ni-Fe phase proved to accelerate as the ball-milling time increased. However, prolonged milling (for 30 hours) retarded the reduction of Fe2O3 as well as the alloying process. The densification process of the Ni-Fe nanoalloy powder strongly depended on the degree of agglomeration which results in enhancing homogeneous sintering. The limited densification of the nanoalloy powder originates from the high degree of particle agglomeration. While intra-agglomerate porosity is easily eliminated in the course of sintering, it is found to resist densification. The limitation of the sintered density could be overcome by increasing the green density of the powder compacts. Full density was achieved by starting with a green density of 72% theoretical density. |
---|---|
ISSN: | 1225-9438 1598-9623 2005-4149 |
DOI: | 10.1007/BF03026040 |