Sharp homogeneity in affine planes, and in some affine generalized polygons
Let G be a collineation group of a generalized (2n + 1 )-gon Γ and let L be a line such that every symmetry σ of any ordinary (2n + 1 )-gon in Γ containing L with σ(L) = L extends uniquely to a collineation in G. We show that Γ is then a Desarguesian projective plane. We also describe the groups G t...
Gespeichert in:
Veröffentlicht in: | Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 2004-12, Vol.74 (1), p.163-174 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let G be a collineation group of a generalized (2n + 1 )-gon Γ and let L be a line such that every symmetry σ of any ordinary (2n + 1 )-gon in Γ containing L with σ(L) = L extends uniquely to a collineation in G. We show that Γ is then a Desarguesian projective plane. We also describe the groups G that arise. As a corollary, we treat the analogous problem without the restriction σ(L) = L. |
---|---|
ISSN: | 0025-5858 1865-8784 |
DOI: | 10.1007/BF02941532 |