Sharp homogeneity in affine planes, and in some affine generalized polygons

Let G be a collineation group of a generalized (2n + 1 )-gon Γ and let L be a line such that every symmetry σ of any ordinary (2n + 1 )-gon in Γ containing L with σ(L) = L extends uniquely to a collineation in G. We show that Γ is then a Desarguesian projective plane. We also describe the groups G t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 2004-12, Vol.74 (1), p.163-174
Hauptverfasser: Grundhöfer, T., Van Maldeghem, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G be a collineation group of a generalized (2n + 1 )-gon Γ and let L be a line such that every symmetry σ of any ordinary (2n + 1 )-gon in Γ containing L with σ(L) = L extends uniquely to a collineation in G. We show that Γ is then a Desarguesian projective plane. We also describe the groups G that arise. As a corollary, we treat the analogous problem without the restriction σ(L) = L.
ISSN:0025-5858
1865-8784
DOI:10.1007/BF02941532