Bott periodicity for fibred cusp operators

In the framework of fibred cusp operators on a manifold X associated to a boundary fibration Φ: ∂X → Y, the homotopy groups of the space Gφ−∞ (X; E) of invertible smoothing perturbations of the identity are computed in terms of the K-theory of T*Y. It is shown that there is a periodicity, namely the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of geometric analysis 2005-01, Vol.15 (4), p.685-722
1. Verfasser: Rochon, Frédéric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the framework of fibred cusp operators on a manifold X associated to a boundary fibration Φ: ∂X → Y, the homotopy groups of the space Gφ−∞ (X; E) of invertible smoothing perturbations of the identity are computed in terms of the K-theory of T*Y. It is shown that there is a periodicity, namely the odd and the even homotopy groups are isomorphic among themselves. To obtain this result, one of the important steps is the description of the index of a Fredholm smoothing perturbation of the identity in terms of an associated K-class in Kc0(T*Y).
ISSN:1050-6926
1559-002X
DOI:10.1007/BF02922250