A Magneto‐Responsive Hydrogel System for the Dynamic Mechano‐Modulation of Stem Cell Niche

The biophysical microenvironment of cells dynamically evolves during embryonic development, leading to defined tissue specification. A versatile and highly adaptive magneto‐responsive hydrogel system composed of magnetic nanorods (MNRs) and a stress‐responsive polymeric matrix is developed to dynami...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2023-03, Vol.33 (12), p.n/a
Hauptverfasser: Goodrich, Robyn, Tai, Youyi, Ye, Zuyang, Yin, Yadong, Nam, Jin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The biophysical microenvironment of cells dynamically evolves during embryonic development, leading to defined tissue specification. A versatile and highly adaptive magneto‐responsive hydrogel system composed of magnetic nanorods (MNRs) and a stress‐responsive polymeric matrix is developed to dynamically regulate the physical stem cell niche. The anisotropic magnetic/shape factor of nanorods is utilized to maximize the strains on the polymeric network, thus regulating the hydrogel modulus in a physiologically relevant range under a minimal magnitude of the applied magnetic fields below 4.5 mT. More significantly, the pre‐alignment of MNRs induces greater collective strains on the polymeric network, resulting in a superior stiffening range, over a 500% increase as compared to that with randomly oriented nanorods. The pre‐alignment of nanorods also enables a fast and reversible response under a magnetic field of the opposite polarity as well as spatially controlled heterogeneity of modulus within the hydrogel by applying anisotropic magnetic fields. The mechano‐modulative capability of this system is validated by a mechanotransduction model with human‐induced pluripotent stem cells where the locally controlled hydrogel modulus regulates the activation of mechano‐sensitive signaling mediators and subsequent stem cell differentiation. Therefore, this magneto‐responsive hydrogel system provides a platform to investigate various cellular behaviors under dynamic mechanical microenvironments. Magnetic nanorod‐embedded gelatin methacrylate hydrogel is engineered to regulate the mechanical stem cell niche. The controlled mechanical anisotropy in the system induces the local elastic modulus‐dependent behaviors of human‐induced pluripotent stem cells including the formation of cell colonies and subsequent differentiation toward specific lineages.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.202211288