Intelligent abnormal behavior detection using double sparseness method

Intelligent detection of abnormal behaviors meets the need of engineering applications for identifying anomalies and alerting operators. However, most existing methods tackle the high-dimensional sequential video data with key frame extraction, which ignore the redundancy effect of inter- and intra-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied intelligence (Dordrecht, Netherlands) Netherlands), 2023-04, Vol.53 (7), p.7728-7740
Hauptverfasser: Mu, Huiyu, Sun, Ruizhi, Chen, Zeqiu, Qin, Jia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Intelligent detection of abnormal behaviors meets the need of engineering applications for identifying anomalies and alerting operators. However, most existing methods tackle the high-dimensional sequential video data with key frame extraction, which ignore the redundancy effect of inter- and intra- video frames. In this paper, a novel A bnormal D etection method based on double sparseness LSSVMoc ( AD_LSSVMoc ) is proposed, which combine both sample (i.e. frame) selection and feature selection simultaneously in a uniform sparse model. For the feature extraction, both handcrafted features and learned features are aggregated into effective descriptors. To achieve feature selection and sample selection, a improved LSSVMoc is proposed with sparse primal and dual optimization strategy, and alternating direction method of multipliers is used to solve the constrained linear equations problem raised in AD_LSSVMoc. Experiments show that the proposed AD_LSSVMoc method achieves a competitive detection performance and high detecting speed compared to state-of-the-art methods.
ISSN:0924-669X
1573-7497
DOI:10.1007/s10489-022-03903-8