A NOTE ON NORMAL COMPLEMENTS FOR FINITE GROUPS
Assume that $G$ is a finite group and $H$ is a 2-nilpotent Sylow tower Hall subgroup of $G$ such that if $x$ and $y$ are $G$ -conjugate elements of $H\cap G^{\prime }$ of prime order or order 4, then $x$ and $y$ are $H$ -conjugate. We prove that there exists a normal subgroup $N$ of $G$ such that $G...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Australian Mathematical Society 2018-08, Vol.98 (1), p.109-112 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Assume that
$G$
is a finite group and
$H$
is a 2-nilpotent Sylow tower Hall subgroup of
$G$
such that if
$x$
and
$y$
are
$G$
-conjugate elements of
$H\cap G^{\prime }$
of prime order or order 4, then
$x$
and
$y$
are
$H$
-conjugate. We prove that there exists a normal subgroup
$N$
of
$G$
such that
$G=HN$
and
$H\cap N=1$
. |
---|---|
ISSN: | 0004-9727 1755-1633 |
DOI: | 10.1017/S0004972718000151 |