ON GROUPS WITH FINITE CONJUGACY CLASSES IN A VERBAL SUBGROUP
Let $w$ be a group-word. For a group $G$ , let $G_{w}$ denote the set of all $w$ -values in $G$ and let $w(G)$ denote the verbal subgroup of $G$ corresponding to $w$ . The group $G$ is an $FC(w)$ -group if the set of conjugates $x^{G_{w}}$ is finite for all $x\in G$ . It is known that if $w$ is a co...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Australian Mathematical Society 2017-12, Vol.96 (3), p.429-437 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
$w$
be a group-word. For a group
$G$
, let
$G_{w}$
denote the set of all
$w$
-values in
$G$
and let
$w(G)$
denote the verbal subgroup of
$G$
corresponding to
$w$
. The group
$G$
is an
$FC(w)$
-group if the set of conjugates
$x^{G_{w}}$
is finite for all
$x\in G$
. It is known that if
$w$
is a concise word, then
$G$
is an
$FC(w)$
-group if and only if
$w(G)$
is
$FC$
-embedded in
$G$
, that is, the conjugacy class
$x^{w(G)}$
is finite for all
$x\in G$
. There are examples showing that this is no longer true if
$w$
is not concise. In the present paper, for an arbitrary word
$w$
, we show that if
$G$
is an
$FC(w)$
-group, then the commutator subgroup
$w(G)^{\prime }$
is
$FC$
-embedded in
$G$
. We also establish the analogous result for
$BFC(w)$
-groups, that is, groups in which the sets
$x^{G_{w}}$
are boundedly finite. |
---|---|
ISSN: | 0004-9727 1755-1633 |
DOI: | 10.1017/S0004972717000442 |