ON THE REAL-VALUED GENERAL SOLUTIONS OF THE D’ALEMBERT EQUATION WITH INVOLUTION

We find all real-valued general solutions $f:S\rightarrow \mathbb{R}$ of the d’Alembert functional equation with involution $$\begin{eqnarray}\displaystyle f(x+y)+f(x+\unicode[STIX]{x1D70E}y)=2f(x)f(y) & & \displaystyle \nonumber\end{eqnarray}$$ for all $x,y\in S$ , where $S$ is a commutativ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Australian Mathematical Society 2017-04, Vol.95 (2), p.260-268
Hauptverfasser: CHUNG, JAEYOUNG, CHOI, CHANG-KWON, CHUNG, SOON-YEONG
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 268
container_issue 2
container_start_page 260
container_title Bulletin of the Australian Mathematical Society
container_volume 95
creator CHUNG, JAEYOUNG
CHOI, CHANG-KWON
CHUNG, SOON-YEONG
description We find all real-valued general solutions $f:S\rightarrow \mathbb{R}$ of the d’Alembert functional equation with involution $$\begin{eqnarray}\displaystyle f(x+y)+f(x+\unicode[STIX]{x1D70E}y)=2f(x)f(y) & & \displaystyle \nonumber\end{eqnarray}$$ for all $x,y\in S$ , where $S$ is a commutative semigroup and $\unicode[STIX]{x1D70E}~:~S\rightarrow S$ is an involution. Also, we find the Lebesgue measurable solutions $f:\mathbb{R}^{n}\rightarrow \mathbb{R}$ of the above functional equation, where $\unicode[STIX]{x1D70E}:\mathbb{R}^{n}\rightarrow \mathbb{R}^{n}$ is a Lebesgue measurable involution. As a direct consequence, we obtain the Lebesgue measurable solutions $f:\mathbb{R}^{n}\rightarrow \mathbb{R}$ of the classical d’Alembert functional equation $$\begin{eqnarray}\displaystyle f(x+y)+f(x-y)=2f(x)f(y) & & \displaystyle \nonumber\end{eqnarray}$$ for all $x,y\in \mathbb{R}^{n}$ . We also exhibit the locally bounded solutions $f:\mathbb{R}^{n}\rightarrow \mathbb{R}$ of the above equations.
doi_str_mv 10.1017/S000497271600099X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2786999564</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S000497271600099X</cupid><sourcerecordid>2786999564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c269t-d044f1a7a9ceba34dfc77e90d1fb5781d4ac7e4d85b9bbf333185ffa515999523</originalsourceid><addsrcrecordid>eNp1kEFOwzAQRS0EEqFwAHaWWAfs2I7jZWjdNlJI1CYp7CInsVErSovTLthxDa7HSUhoJRaI1czovz9f-gBcY3SLEeZ3GUKICu5x7HebEE8nwMGcMRf7hJwCp5fdXj8HF2276i7GvMABszSB-VTCuQxjdxHGhRzBiUzkPIxhlsZFHqVJBtPxDzT6-vgMY_lwL-c5lLMi7FX4GOVTGCWLI30Jzox6afXVcQ5AMZb5cOrG6SQadim154ud2yBKDVZciVpXitDG1JxrgRpsKsYD3FBVc02bgFWiqgwhBAfMGMUwE0IwjwzAzeHv1m7e9rrdlavN3r52kaXHA7-HfNpR-EDVdtO2Vptya5drZd9LjMq-ufJPc52HHD1qXdll86x_X__v-gZt5mnM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786999564</pqid></control><display><type>article</type><title>ON THE REAL-VALUED GENERAL SOLUTIONS OF THE D’ALEMBERT EQUATION WITH INVOLUTION</title><source>Cambridge Journals</source><creator>CHUNG, JAEYOUNG ; CHOI, CHANG-KWON ; CHUNG, SOON-YEONG</creator><creatorcontrib>CHUNG, JAEYOUNG ; CHOI, CHANG-KWON ; CHUNG, SOON-YEONG</creatorcontrib><description>We find all real-valued general solutions $f:S\rightarrow \mathbb{R}$ of the d’Alembert functional equation with involution $$\begin{eqnarray}\displaystyle f(x+y)+f(x+\unicode[STIX]{x1D70E}y)=2f(x)f(y) &amp; &amp; \displaystyle \nonumber\end{eqnarray}$$ for all $x,y\in S$ , where $S$ is a commutative semigroup and $\unicode[STIX]{x1D70E}~:~S\rightarrow S$ is an involution. Also, we find the Lebesgue measurable solutions $f:\mathbb{R}^{n}\rightarrow \mathbb{R}$ of the above functional equation, where $\unicode[STIX]{x1D70E}:\mathbb{R}^{n}\rightarrow \mathbb{R}^{n}$ is a Lebesgue measurable involution. As a direct consequence, we obtain the Lebesgue measurable solutions $f:\mathbb{R}^{n}\rightarrow \mathbb{R}$ of the classical d’Alembert functional equation $$\begin{eqnarray}\displaystyle f(x+y)+f(x-y)=2f(x)f(y) &amp; &amp; \displaystyle \nonumber\end{eqnarray}$$ for all $x,y\in \mathbb{R}^{n}$ . We also exhibit the locally bounded solutions $f:\mathbb{R}^{n}\rightarrow \mathbb{R}$ of the above equations.</description><identifier>ISSN: 0004-9727</identifier><identifier>EISSN: 1755-1633</identifier><identifier>DOI: 10.1017/S000497271600099X</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Euclidean space</subject><ispartof>Bulletin of the Australian Mathematical Society, 2017-04, Vol.95 (2), p.260-268</ispartof><rights>2016 Australian Mathematical Publishing Association Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c269t-d044f1a7a9ceba34dfc77e90d1fb5781d4ac7e4d85b9bbf333185ffa515999523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S000497271600099X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27915,27916,55619</link.rule.ids></links><search><creatorcontrib>CHUNG, JAEYOUNG</creatorcontrib><creatorcontrib>CHOI, CHANG-KWON</creatorcontrib><creatorcontrib>CHUNG, SOON-YEONG</creatorcontrib><title>ON THE REAL-VALUED GENERAL SOLUTIONS OF THE D’ALEMBERT EQUATION WITH INVOLUTION</title><title>Bulletin of the Australian Mathematical Society</title><addtitle>Bull. Aust. Math. Soc</addtitle><description>We find all real-valued general solutions $f:S\rightarrow \mathbb{R}$ of the d’Alembert functional equation with involution $$\begin{eqnarray}\displaystyle f(x+y)+f(x+\unicode[STIX]{x1D70E}y)=2f(x)f(y) &amp; &amp; \displaystyle \nonumber\end{eqnarray}$$ for all $x,y\in S$ , where $S$ is a commutative semigroup and $\unicode[STIX]{x1D70E}~:~S\rightarrow S$ is an involution. Also, we find the Lebesgue measurable solutions $f:\mathbb{R}^{n}\rightarrow \mathbb{R}$ of the above functional equation, where $\unicode[STIX]{x1D70E}:\mathbb{R}^{n}\rightarrow \mathbb{R}^{n}$ is a Lebesgue measurable involution. As a direct consequence, we obtain the Lebesgue measurable solutions $f:\mathbb{R}^{n}\rightarrow \mathbb{R}$ of the classical d’Alembert functional equation $$\begin{eqnarray}\displaystyle f(x+y)+f(x-y)=2f(x)f(y) &amp; &amp; \displaystyle \nonumber\end{eqnarray}$$ for all $x,y\in \mathbb{R}^{n}$ . We also exhibit the locally bounded solutions $f:\mathbb{R}^{n}\rightarrow \mathbb{R}$ of the above equations.</description><subject>Euclidean space</subject><issn>0004-9727</issn><issn>1755-1633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEFOwzAQRS0EEqFwAHaWWAfs2I7jZWjdNlJI1CYp7CInsVErSovTLthxDa7HSUhoJRaI1czovz9f-gBcY3SLEeZ3GUKICu5x7HebEE8nwMGcMRf7hJwCp5fdXj8HF2276i7GvMABszSB-VTCuQxjdxHGhRzBiUzkPIxhlsZFHqVJBtPxDzT6-vgMY_lwL-c5lLMi7FX4GOVTGCWLI30Jzox6afXVcQ5AMZb5cOrG6SQadim154ud2yBKDVZciVpXitDG1JxrgRpsKsYD3FBVc02bgFWiqgwhBAfMGMUwE0IwjwzAzeHv1m7e9rrdlavN3r52kaXHA7-HfNpR-EDVdtO2Vptya5drZd9LjMq-ufJPc52HHD1qXdll86x_X__v-gZt5mnM</recordid><startdate>201704</startdate><enddate>201704</enddate><creator>CHUNG, JAEYOUNG</creator><creator>CHOI, CHANG-KWON</creator><creator>CHUNG, SOON-YEONG</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>201704</creationdate><title>ON THE REAL-VALUED GENERAL SOLUTIONS OF THE D’ALEMBERT EQUATION WITH INVOLUTION</title><author>CHUNG, JAEYOUNG ; CHOI, CHANG-KWON ; CHUNG, SOON-YEONG</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c269t-d044f1a7a9ceba34dfc77e90d1fb5781d4ac7e4d85b9bbf333185ffa515999523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Euclidean space</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CHUNG, JAEYOUNG</creatorcontrib><creatorcontrib>CHOI, CHANG-KWON</creatorcontrib><creatorcontrib>CHUNG, SOON-YEONG</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Bulletin of the Australian Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CHUNG, JAEYOUNG</au><au>CHOI, CHANG-KWON</au><au>CHUNG, SOON-YEONG</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ON THE REAL-VALUED GENERAL SOLUTIONS OF THE D’ALEMBERT EQUATION WITH INVOLUTION</atitle><jtitle>Bulletin of the Australian Mathematical Society</jtitle><addtitle>Bull. Aust. Math. Soc</addtitle><date>2017-04</date><risdate>2017</risdate><volume>95</volume><issue>2</issue><spage>260</spage><epage>268</epage><pages>260-268</pages><issn>0004-9727</issn><eissn>1755-1633</eissn><abstract>We find all real-valued general solutions $f:S\rightarrow \mathbb{R}$ of the d’Alembert functional equation with involution $$\begin{eqnarray}\displaystyle f(x+y)+f(x+\unicode[STIX]{x1D70E}y)=2f(x)f(y) &amp; &amp; \displaystyle \nonumber\end{eqnarray}$$ for all $x,y\in S$ , where $S$ is a commutative semigroup and $\unicode[STIX]{x1D70E}~:~S\rightarrow S$ is an involution. Also, we find the Lebesgue measurable solutions $f:\mathbb{R}^{n}\rightarrow \mathbb{R}$ of the above functional equation, where $\unicode[STIX]{x1D70E}:\mathbb{R}^{n}\rightarrow \mathbb{R}^{n}$ is a Lebesgue measurable involution. As a direct consequence, we obtain the Lebesgue measurable solutions $f:\mathbb{R}^{n}\rightarrow \mathbb{R}$ of the classical d’Alembert functional equation $$\begin{eqnarray}\displaystyle f(x+y)+f(x-y)=2f(x)f(y) &amp; &amp; \displaystyle \nonumber\end{eqnarray}$$ for all $x,y\in \mathbb{R}^{n}$ . We also exhibit the locally bounded solutions $f:\mathbb{R}^{n}\rightarrow \mathbb{R}$ of the above equations.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S000497271600099X</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0004-9727
ispartof Bulletin of the Australian Mathematical Society, 2017-04, Vol.95 (2), p.260-268
issn 0004-9727
1755-1633
language eng
recordid cdi_proquest_journals_2786999564
source Cambridge Journals
subjects Euclidean space
title ON THE REAL-VALUED GENERAL SOLUTIONS OF THE D’ALEMBERT EQUATION WITH INVOLUTION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T03%3A50%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ON%20THE%20REAL-VALUED%20GENERAL%20SOLUTIONS%20OF%20THE%20D%E2%80%99ALEMBERT%20EQUATION%20WITH%20INVOLUTION&rft.jtitle=Bulletin%20of%20the%20Australian%20Mathematical%20Society&rft.au=CHUNG,%20JAEYOUNG&rft.date=2017-04&rft.volume=95&rft.issue=2&rft.spage=260&rft.epage=268&rft.pages=260-268&rft.issn=0004-9727&rft.eissn=1755-1633&rft_id=info:doi/10.1017/S000497271600099X&rft_dat=%3Cproquest_cross%3E2786999564%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786999564&rft_id=info:pmid/&rft_cupid=10_1017_S000497271600099X&rfr_iscdi=true