ON THE REAL-VALUED GENERAL SOLUTIONS OF THE D’ALEMBERT EQUATION WITH INVOLUTION

We find all real-valued general solutions $f:S\rightarrow \mathbb{R}$ of the d’Alembert functional equation with involution $$\begin{eqnarray}\displaystyle f(x+y)+f(x+\unicode[STIX]{x1D70E}y)=2f(x)f(y) & & \displaystyle \nonumber\end{eqnarray}$$ for all $x,y\in S$ , where $S$ is a commutativ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Australian Mathematical Society 2017-04, Vol.95 (2), p.260-268
Hauptverfasser: CHUNG, JAEYOUNG, CHOI, CHANG-KWON, CHUNG, SOON-YEONG
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We find all real-valued general solutions $f:S\rightarrow \mathbb{R}$ of the d’Alembert functional equation with involution $$\begin{eqnarray}\displaystyle f(x+y)+f(x+\unicode[STIX]{x1D70E}y)=2f(x)f(y) & & \displaystyle \nonumber\end{eqnarray}$$ for all $x,y\in S$ , where $S$ is a commutative semigroup and $\unicode[STIX]{x1D70E}~:~S\rightarrow S$ is an involution. Also, we find the Lebesgue measurable solutions $f:\mathbb{R}^{n}\rightarrow \mathbb{R}$ of the above functional equation, where $\unicode[STIX]{x1D70E}:\mathbb{R}^{n}\rightarrow \mathbb{R}^{n}$ is a Lebesgue measurable involution. As a direct consequence, we obtain the Lebesgue measurable solutions $f:\mathbb{R}^{n}\rightarrow \mathbb{R}$ of the classical d’Alembert functional equation $$\begin{eqnarray}\displaystyle f(x+y)+f(x-y)=2f(x)f(y) & & \displaystyle \nonumber\end{eqnarray}$$ for all $x,y\in \mathbb{R}^{n}$ . We also exhibit the locally bounded solutions $f:\mathbb{R}^{n}\rightarrow \mathbb{R}$ of the above equations.
ISSN:0004-9727
1755-1633
DOI:10.1017/S000497271600099X