STRUCTURE TOPOLOGY AND EXTREME OPERATORS
We say that a Banach space $X$ is ‘nice’ if every extreme operator from any Banach space into $X$ is a nice operator (that is, its adjoint preserves extreme points). We prove that if $X$ is a nice almost $CL$ -space, then $X$ is isometrically isomorphic to $c_{0}(I)$ for some set $I$ . We also show...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Australian Mathematical Society 2017-04, Vol.95 (2), p.315-321 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We say that a Banach space
$X$
is ‘nice’ if every extreme operator from any Banach space into
$X$
is a nice operator (that is, its adjoint preserves extreme points). We prove that if
$X$
is a nice almost
$CL$
-space, then
$X$
is isometrically isomorphic to
$c_{0}(I)$
for some set
$I$
. We also show that if
$X$
is a nice Banach space whose closed unit ball has the Krein–Milman property, then
$X$
is
$l_{\infty }^{n}$
for some
$n\in \mathbb{N}$
. The proof of our results relies on the structure topology. |
---|---|
ISSN: | 0004-9727 1755-1633 |
DOI: | 10.1017/S0004972716000745 |