STRUCTURE TOPOLOGY AND EXTREME OPERATORS

We say that a Banach space $X$ is ‘nice’ if every extreme operator from any Banach space into $X$ is a nice operator (that is, its adjoint preserves extreme points). We prove that if $X$ is a nice almost $CL$ -space, then $X$ is isometrically isomorphic to $c_{0}(I)$ for some set $I$ . We also show...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Australian Mathematical Society 2017-04, Vol.95 (2), p.315-321
Hauptverfasser: CABRERA-SERRANO, ANA M., MENA-JURADO, JUAN F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We say that a Banach space $X$ is ‘nice’ if every extreme operator from any Banach space into $X$ is a nice operator (that is, its adjoint preserves extreme points). We prove that if $X$ is a nice almost $CL$ -space, then $X$ is isometrically isomorphic to $c_{0}(I)$ for some set $I$ . We also show that if $X$ is a nice Banach space whose closed unit ball has the Krein–Milman property, then $X$ is $l_{\infty }^{n}$ for some $n\in \mathbb{N}$ . The proof of our results relies on the structure topology.
ISSN:0004-9727
1755-1633
DOI:10.1017/S0004972716000745