THE STRONG IRREDUCIBILITY OF A CLASS OF COWEN–DOUGLAS OPERATORS ON BANACH SPACES

Let ${\mathcal{B}}_{n}(\unicode[STIX]{x1D6FA})$ be the set of Cowen–Douglas operators of index $n$ on a nonempty bounded connected open subset $\unicode[STIX]{x1D6FA}$ of $\mathbb{C}$ . We consider the strong irreducibility of a class of Cowen–Douglas operators ${\mathcal{F}}{\mathcal{B}}_{n}(\unico...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Australian Mathematical Society 2016-12, Vol.94 (3), p.479-488
Hauptverfasser: LIN, LIQIONG, ZHANG, YUNNAN
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let ${\mathcal{B}}_{n}(\unicode[STIX]{x1D6FA})$ be the set of Cowen–Douglas operators of index $n$ on a nonempty bounded connected open subset $\unicode[STIX]{x1D6FA}$ of $\mathbb{C}$ . We consider the strong irreducibility of a class of Cowen–Douglas operators ${\mathcal{F}}{\mathcal{B}}_{n}(\unicode[STIX]{x1D6FA})$ on Banach spaces. We show ${\mathcal{F}}{\mathcal{B}}_{n}(\unicode[STIX]{x1D6FA})\subseteq {\mathcal{B}}_{n}(\unicode[STIX]{x1D6FA})$ and give some conditions under which an operator $T\in {\mathcal{F}}{\mathcal{B}}_{n}(\unicode[STIX]{x1D6FA})$ is strongly irreducible. All these results generalise similar results on Hilbert spaces.
ISSN:0004-9727
1755-1633
DOI:10.1017/S0004972716000460